Wen-Feng Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4433690/publications.pdf

Version: 2024-02-01

101384 110170 4,401 87 36 64 citations g-index h-index papers 89 89 89 4602 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	High CO-Tolerant Ru-Based Catalysts by Constructing an Oxide Blocking Layer. Journal of the American Chemical Society, 2022, 144, 9292-9301.	6.6	29
2	Probing the enhanced methanol electrooxidation mechanism on platinum-metal oxide catalyst. Applied Catalysis B: Environmental, 2021, 280, 119393.	10.8	68
3	Curvatureâ€induced Zn 3d Electron Return on Znâ^'N ₄ Singleâ€atom Carbon Nanofibers for Boosting Electroreduction of CO ₂ . ChemCatChem, 2021, 13, 603-609.	1.8	29
4	Electrochemical Oxygen Reduction to Hydrogen Peroxide via a Twoâ€Electron Transfer Pathway on Carbonâ€Based Singleâ€Atom Catalysts. Advanced Materials Interfaces, 2021, 8, 2001360.	1.9	35
5	Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chemical Society Reviews, 2021, 50, 8790-8817.	18.7	331
6	In-situ synthesis of cross-linked imidazolium functionalized Poly(styrene-b-isobutylene-b-styrene) for anion exchange membranes. Polymer, 2021, 224, 123682.	1.8	11
7	Boosting electrocatalytic oxidation of formic acid on SnO2-decorated Pd nanosheets. Journal of Catalysis, 2021, 399, 8-14.	3.1	11
8	S vacancy modulated Zn Cd1â~'S/CoP quantum dots for efficient H2 evolution from water splitting under visible light. Journal of Energy Chemistry, 2021, 61, 210-218.	7.1	26
9	Semiconductor Electrochemistry for Clean Energy Conversion and Storage. Electrochemical Energy Reviews, 2021, 4, 757-792.	13.1	77
10	A review of non-precious metal single atom confined nanomaterials in different structural dimensions (1D–3D) as highly active oxygen redox reaction electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 2222-2245.	5. 2	59
11	Insights into ethanol electro-oxidation over solvated Pt(1 0 0): Origin of selectivity and kinetics revealed by DFT. Applied Surface Science, 2020, 533, 147505.	3.1	10
12	Understanding of Dynamic Contacting Behaviors of Underwater Gas Bubbles on Solid Surfaces. Langmuir, 2020, 36, 11422-11428.	1.6	7
13	High-Index-Facet- and High-Surface-Energy Nanocrystals of Metals and Metal Oxides as Highly Efficient Catalysts. Joule, 2020, 4, 2562-2598.	11.7	136
14	Antibuoyancy and Unidirectional Gas Evolution by Janus Electrodes with Asymmetric Wettability. ACS Applied Materials & Samp; Interfaces, 2020, 12, 23627-23634.	4.0	29
15	Atomically Dispersed Fe-N4 Modified with Precisely Located S for Highly Efficient Oxygen Reduction. Nano-Micro Letters, 2020, 12, 116.	14.4	99
16	A neural-network-like catalyst structure for the oxygen reduction reaction: carbon nanotube bridged hollow PtCo alloy nanoparticles in a MOF-like matrix for energy technologies. Journal of Materials Chemistry A, 2019, 7, 19786-19792.	5.2	37
17	A general route <i>via</i> formamide condensation to prepare atomically dispersed metalâ€"nitrogenâ€"carbon electrocatalysts for energy technologies. Energy and Environmental Science, 2019, 12, 1317-1325.	15.6	290
18	Pd Nanocrystals with Continuously Tunable High-Index Facets as a Model Nanocatalyst. ACS Catalysis, 2019, 9, 3144-3152.	5. 5	68

#	Article	IF	Citations
19	Electrocatalytic oxidation of ethanol and ethylene glycol on cubic, octahedral and rhombic dodecahedral palladium nanocrystals. Chemical Communications, 2018, 54, 2562-2565.	2.2	59
20	Effect of Mass Transport on the Electrochemical Oxidation of Alcohols Over Electrodeposited Film and Carbon-Supported Pt Electrodes. Topics in Catalysis, 2018, 61, 240-253.	1.3	36
21	A rechargeable Mg 2+ /Li + hybrid battery based on sheet-like MoSe 2 /C nanocomposites cathode. Electrochemistry Communications, 2018, 90, 16-20.	2.3	24
22	Copper-based Graphene Nanoplatelet Composites as Interconnect for Power Electronics Pacakging. , 2018, , .		0
23	Comparative investigation of CO2 and oxygen reduction on Fe/N/C catalysts. Electrochemistry Communications, 2018, 97, 82-86.	2.3	12
24	Insights into the mechanism of electrochemical ozone production via water splitting on the Ni and Sb doped SnO ₂ catalyst. Physical Chemistry Chemical Physics, 2017, 19, 3800-3806.	1.3	18
25	An insight into methanol oxidation mechanisms on RuO ₂ (100) under an aqueous environment by DFT calculations. Physical Chemistry Chemical Physics, 2017, 19, 7476-7480.	1.3	15
26	Gold nanoparticle-polymer nanocomposites synthesized by room temperature atmospheric pressure plasma and their potential for fuel cell electrocatalytic application. Scientific Reports, 2017, 7, 46682.	1.6	64
27	Dodecahedral W@WC Composite as Efficient Catalyst for Hydrogen Evolution and Nitrobenzene Reduction Reactions. ACS Applied Materials & Samp; Interfaces, 2017, 9, 20594-20602.	4.0	28
28	Designing Pt-Based Electrocatalysts with High Surface Energy. ACS Energy Letters, 2017, 2, 1892-1900.	8.8	46
29	Fabricating Core-Shell WC@C/Pt Structures and its Enhanced Performance for Methanol Electrooxidation. Chinese Journal of Chemical Physics, 2017, 30, 450-456.	0.6	2
30	Electrochemical interfacial influences on deoxygenation and hydrogenation reactions in CO reduction on a Cu(100) surface. Physical Chemistry Chemical Physics, 2016, 18, 15304-15311.	1.3	6
31	New insights into electrocatalytic ozone generation via splitting of water over PbO2 electrode: A DFT study. Chemical Physics Letters, 2016, 654, 46-51.	1.2	23
32	Development of a cross-linked quaternized poly(styrene-b-isobutylene-b-styrene)/graphene oxide composite anion exchange membrane for direct alkaline methanol fuel cell application. RSC Advances, 2016, 6, 52122-52130.	1.7	28
33	Insights into the mechanism of nitrobenzene reduction to aniline over Pt catalyst and the significance of the adsorption of phenyl group on kinetics. Chemical Engineering Journal, 2016, 293, 337-344.	6.6	96
34	Elucidation of the surface structure–selectivity relationship in ethanol electro-oxidation over platinum by density functional theory. Physical Chemistry Chemical Physics, 2016, 18, 15501-15504.	1.3	20
35	Biobutanol as Fuel for Direct Alcohol Fuel Cellsâ€"Investigation of Sn-Modified Pt Catalyst for Butanol Electro-oxidation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12859-12870.	4.0	43
36	A simple way to fine tune the redox potentials of cobalt ions encapsulated in nitrogen doped graphene molecular catalysts for the oxygen evolution reaction. Chemical Communications, 2016, 52, 13409-13412.	2.2	11

#	Article	IF	CITATIONS
37	Insight into CO Activation over Cu(100) under Electrochemical Conditions. Electrochimica Acta, 2016, 190, 446-454.	2.6	19
38	Enhanced Dispersion of TiO2 Nanoparticles in a TiO2/PEDOT:PSS Hybrid Nanocomposite via Plasma-Liquid Interactions. Scientific Reports, 2015, 5, 15765.	1.6	50
39	Activity Enhancement of Tetrahexahedral Pd Nanocrystals by Bi Decoration towards Ethanol Electrooxidation in Alkaline Media. Electrochimica Acta, 2015, 162, 290-299.	2.6	14
40	Methanol electro-oxidation on platinum modified tungsten carbides in direct methanol fuel cells: a DFT study. Physical Chemistry Chemical Physics, 2015, 17, 25235-25243.	1.3	46
41	The effects of stepped sites and ruthenium adatom decoration on methanol dehydrogenation over platinum-based catalyst surfaces. Catalysis Today, 2015, 242, 230-239.	2.2	10
42	The origin of high activity but low CO2 selectivity on binary PtSn in the direct ethanol fuel cell. Physical Chemistry Chemical Physics, 2014, 16, 9432-9440.	1.3	56
43	Significance of \hat{l}^2 -dehydrogenation in ethanol electro-oxidation on platinum doped with Ru, Rh, Pd, Os and Ir. Physical Chemistry Chemical Physics, 2014, 16, 13248-13254.	1.3	44
44	Role of Water and Adsorbed Hydroxyls on Ethanol Electrochemistry on Pd: New Mechanism, Active Centers, and Energetics for Direct Ethanol Fuel Cell Running in Alkaline Medium. Journal of Physical Chemistry C, 2014, 118, 5762-5772.	1.5	73
45	Effect of methanol concentration on oxygen reduction reaction activity of Pt/C catalysts. Chinese Journal of Catalysis, 2013, 34, 1105-1111.	6.9	6
46	Electrooxidation of methanol in an alkaline fuel cell: determination of the nature of the initial adsorbate. Physical Chemistry Chemical Physics, 2013, 15, 20170.	1.3	9
47	WC@meso-Pt core–shell nanostructures for fuel cells. Chemical Communications, 2013, 49, 11677.	2.2	15
48	Synthesis of Co3O4 nano-octahedra enclosed by $\{111\}$ facets and their excellent lithium storage properties as anode material of lithium ion batteries. Nano Energy, 2013, 2, 394-402.	8.2	131
49	Low loading platinum nanoparticles on reduced graphene oxide-supported tungsten carbide crystallites as a highly active electrocatalyst for methanol oxidation. Electrochimica Acta, 2013, 114, 133-141.	2.6	41
50	Acetaldehyde Production in the Direct Ethanol Fuel Cell: Mechanistic Elucidation by Density Functional Theory. Journal of Physical Chemistry C, 2012, 116, 7185-7188.	1.5	18
51	Tetrahexahedral Pt Nanocrystal Catalysts Decorated with Ru Adatoms and Their Enhanced Activity in Methanol Electrooxidation. ACS Catalysis, 2012, 2, 708-715.	5.5	76
52	Enhancing the activity and tuning the mechanism of formic acid oxidation at tetrahexahedral Pt nanocrystals by Au decoration. Physical Chemistry Chemical Physics, 2012, 14, 16415.	1.3	40
53	A quantitative research on S- and SO2-poisoning Pt/Vulcan carbon fuel cell catalyst. Electrochimica Acta, 2012, 67, 50-54.	2.6	22
54	Template-free environmentally friendly synthesis and characterization of unsupported tungsten carbide with a controllable porous framework. Microporous and Mesoporous Materials, 2012, 149, 76-85.	2.2	9

#	Article	IF	CITATIONS
55	Origin of Low CO ₂ Selectivity on Platinum in the Direct Ethanol Fuel Cell. Angewandte Chemie - International Edition, 2012, 51, 1572-1575.	7.2	130
56	Room Temperature, Electrochemical Generation of Ozone with 50% Current Efficiency in 0.5M Sulfuric Acid at Cell Voltages < 3V. Ozone: Science and Engineering, 2009, 31, 287-293.	1.4	57
57	The effects of the specific adsorption of anion on the reactivity of the Ru(0001) surface towards CO adsorption and oxidation: in situ FTIRS studies. Physical Chemistry Chemical Physics, 2008, 10, 3774.	1.3	20
58	IN-SITU FT-IR SPECTROSCOPIC STUDIES OF FUEL CELL ELECTRO-CATALYSIS: FROM SINGLE-CRYSTAL TO NANOPARTICLE SURFACES. Chemical Engineering Communications, 2007, 195, 147-166.	1.5	5
59	In-situ FTIR Spectroscopic Studies of the Adsorption and Oxidation of Small Organic Molecules at the Ru(0001) Electrode Under Various Conditions. , 2007, , 99-138.		1
60	A novel electrochemical device for the disinfection of fluids by OH radicals. Chemical Communications, 2006, , 4022.	2.2	21
61	PtRu/Ti anodes with varying Pt ? Ru ratio prepared by electrodeposition for the direct methanol fuel cell. Physical Chemistry Chemical Physics, 2006, 8, 2720.	1.3	36
62	Preparation and Characterization of New Anodes Based on Ti Mesh for Direct Methanol Fuel Cells. Journal of the Electrochemical Society, 2006, 153, A1575.	1.3	36
63	Novel electrode structure for DMFC operated with liquid methanol. Electrochemistry Communications, 2006, 8, 5-8.	2.3	49
64	Ti mesh anodes prepared by electrochemical deposition for the direct methanol fuel cell. International Journal of Hydrogen Energy, 2006, 31, 1914-1919.	3.8	27
65	A tubular direct methanol fuel cell with Ti mesh anode. Journal of Power Sources, 2006, 160, 1003-1008.	4.0	41
66	PtRuO2/Ti anodes with a varying Pt:Ru ratio for direct methanol fuel cells. Journal of Power Sources, 2006, 161, 813-819.	4.0	26
67	Tubular Cathode Prepared by a Dip-Coating Method for Low Temperature DMFC. Fuel Cells, 2006, 6, 326-330.	1.5	8
68	Identification of CO Adsorbed at Ru and Pt Sites on a Polycrystalline Pt/Ru Electrode and the Observation of Their Oxidation and Free Interchange under Open Circuit Conditions. Journal of Physical Chemistry B, 2004, 108, 3391-3394.	1,2	24
69	Structure and reactivity of the Ru(0001) electrode towards fuel cell electrocatalysis. Electrochimica Acta, 2003, 48, 3815-3822.	2.6	24
70	In situ FTIR studies on the effect of temperature on the electro-oxidation of small organic molecules at the Ru(0001) electrode. Faraday Discussions, 2002, 121, 267-284.	1.6	12
71	The electro-oxidations of methanol and formic acid at the Ru(0001) electrode as a function of temperature: in-situ FTIR studies. Physical Chemistry Chemical Physics, 2001, 3, 3312-3319.	1.3	22
72	Observation of an optical phonon band in situ in TiO2 electrochemistry: a possible indicator of strongly trapped intermediates in the O2 evolution reaction. Chemical Physics Letters, 2001, 344, 488-494.	1.2	3

#	Article	IF	CITATIONS
73	Standing Wave Oscillations in an Electrocatalytic Reaction. Journal of Physical Chemistry A, 2000, 104, 1854-1860.	1.1	48
74	Methanol Oxidation on PtRu Electrodes. Influence of Surface Structure and Ptâ^'Ru Atom Distribution. Langmuir, 2000, 16, 522-529.	1.6	385
75	In Situ FTIR Studies of the Effect of Temperature on the Adsorption and Electrooxidation of CO at the Ru(0001) Electrode Surface. Journal of Physical Chemistry B, 2000, 104, 12002-12011.	1.2	31
76	The Electro-Oxidation of CO at the Ru(0001) Single-Crystal Electrode Surface. Journal of Physical Chemistry B, 2000, 104, 6642-6652.	1,2	73
77	Electrochemical versus Gas-Phase Oxidation of Ru Single-Crystal Surfaces. Journal of Physical Chemistry B, 2000, 104, 6040-6048.	1.2	83
78	Identification of the structure of a CO adlayer on a $Pt(111)$ electrode. Chemical Physics Letters, 1999, 312, 1-6.	1.2	18
79	Catalysis of CO Electrooxidation at Pt, Ru, and PtRu Alloy. An in Situ FTIR Study. Journal of Physical Chemistry B, 1999, 103, 3250-3257.	1.2	177
80	Electrocatalytic Activity of Ru-Modified $Pt(111)$ Electrodes toward CO Oxidation. Journal of Physical Chemistry B, 1999, 103, 6968-6977.	1.2	222
81	Trimethoxymethane as an alternative fuel for a direct oxidation PBI polymer electrolyte fuel cell. Electrochimica Acta, 1998, 43, 3821-3828.	2.6	56
82	Onâ€Line FTIR Spectroscopic Investigations of Methanol Oxidation in a Direct Methanol Fuel Cell. Journal of the Electrochemical Society, 1997, 144, 1917-1922.	1.3	101
83	In situ ftirs investigations of surface processes of Rh electrode—novel observation of geminal adsorbates of carbon monoxide on Rh electrode in acid solution. Electrochimica Acta, 1996, 41, 803-809.	2.6	37
84	In Situ FTIR Spectroscopy Studies on Electrochemical Redox Processes of High Nuclearity Osmium Carbonyl Clusters. The Journal of Physical Chemistry, 1996, 100, 14904-14907.	2.9	2
85	Investigations of coadsorption of carbon monoxide with S or Bi adatoms at a platinum electrode by in-situ FTIR spectroscopy and quantum chemistry analysis. Journal of Electroanalytical Chemistry, 1994, 364, 1-7.	1.9	28
86	Quantum chemistry and in situ FTir spectroscopy studies on potential-dependent properties of CO adsorbed on Pt electrodes. Electrochimica Acta, 1993, 38, 1107-1114.	2.6	15
87	Quantum chemistry studies on electronic properties of CNâ [^] adsorbed on silver electrodes. Electrochimica Acta, 1992, 37, 211-213.	2.6	11