William Forde Thompson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4433656/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The psychological basis of music appreciation: Structure, self, source Psychological Review, 2023, 130, 260-284.	2.7	12
2	Psychosocial risks and benefits ofÂexposure to heavy metal music with aggressive themes: Current theory and evidence. Current Psychology, 2023, 42, 21133-21150.	1.7	5
3	Fans of Violent Music: The Role of Passion in Positive and Negative Emotional Experience. Musicae Scientiae, 2022, 26, 364-387.	2.2	11
4	Beyond Audition: Psychosocial Benefits of Music Training for Children With Hearing Loss. Ear and Hearing, 2022, 43, 128-142.	1.0	1
5	Does music help regulate depressive symptoms for fans of violently themed music?. Psychology of Music, 2022, 50, 1296-1311.	0.9	6
6	Children's decoding of emotional prosody in four languages Emotion, 2022, 22, 198-212.	1.5	5
7	Morbid curiosity for music containing violent themes. Personality and Individual Differences, 2022, 197, 111797.	1.6	1
8	An efficient and adaptive test of auditory mental imagery. Psychological Research, 2021, 85, 1201-1220.	1.0	8
9	An investigation of empathy in male and female fans of aggressive music. Musicae Scientiae, 2021, 25, 189-211.	2.2	7
10	Rhythmic Chanting and Mystical States across Traditions. Brain Sciences, 2021, 11, 101.	1.1	16
11	Movementâ€induced hypoalgesia: behavioral characteristics and neural mechanisms. Annals of the New York Academy of Sciences, 2021, 1497, 39-56.	1.8	3
12	Assessing Vocal Chanting as an Online Psychosocial Intervention. Frontiers in Psychology, 2021, 12, 647632.	1.1	8
13	"They're playing our songâ€! Couple-defining songs in intimate relationships. Journal of Social and Personal Relationships, 2020, 37, 163-179.	1.4	6
14	Song and infant-directed speech facilitate word learning. Quarterly Journal of Experimental Psychology, 2020, 73, 1036-1054.	0.6	15
15	A Preliminary Exploration of the Stability of Music- and Photo-Evoked Autobiographical Memories in People with Alzheimer's and Behavioral Variant Frontotemporal Dementia. Music & Science, 2020, 3, 205920432095727.	0.6	5
16	The human brain processes hierarchical structures of meter and harmony differently: Evidence from musicians and nonmusicians. Psychophysiology, 2020, 57, e13598.	1.2	5
17	Why is music therapeutic for neurological disorders? The Therapeutic Music Capacities Model. Neuroscience and Biobehavioral Reviews, 2020, 112, 600-615.	2.9	66
18	Music evoked autobiographical memories in people with behavioural variant frontotemporal dementia. Memory, 2020, 28, 323-336.	0.9	16

William Forde Thompson

#	Article	IF	CITATIONS
19	Characterizing experiences of music-evoked visual imagery in high prevalence contexts Psychomusicology: Music, Mind and Brain, 2020, 30, 72-87.	1.1	3
20	Music Training for Children With Sensorineural Hearing Loss Improves Speech-in-Noise Perception. Journal of Speech, Language, and Hearing Research, 2020, 63, 1990-2015.	0.7	26
21	The Rapid Emergence of Musical Pitch Structure in Human Cortex. Journal of Neuroscience, 2020, 40, 2108-2118.	1.7	10
22	When music compensates language: a case study of severe aphasia in dementia and the use of music by a spousal caregiver. Aphasiology, 2019, 33, 449-465.	1.4	17
23	Vowel Content Influences Relative Pitch Perception in Vocal Melodies. Music Perception, 2019, 37, 57-65.	0.5	11
24	A â€~Music, Mind and Movement' Program for People With Dementia: Initial Evidence of Improved Cognition. Frontiers in Psychology, 2019, 10, 1435.	1.1	16
25	Spontaneous emergence of language-like and music-like vocalizations from an artificial protolanguage. Semiotica, 2019, 2019, 1-23.	0.2	14
26	Implicit violent imagery processing among fans and non-fans of music with violent themes. Royal Society Open Science, 2019, 6, 181580.	1.1	12
27	Musical imagery depends upon coordination of auditory and sensorimotor brain activity. Scientific Reports, 2019, 9, 16823.	1.6	11
28	Editorial: Novel Approaches for Studying Creativity in Problem-Solving and Artistic Performance. Frontiers in Psychology, 2019, 10, 2059.	1.1	1
29	<p>Music Reduces Pain Unpleasantness: Evidence from an EEG Study</p> . Journal of Pain Research, 2019, Volume 12, 3331-3342.	0.8	20
30	Who enjoys listening to violent music and why?. Psychology of Popular Media Culture, 2019, 8, 218-232.	2.6	45
31	Preserved Musical Instrument Playing in Dementia. , 2019, , 138-168.		2
32	Measuring the onset of experiences of emotion and imagery in response to music Psychomusicology: Music, Mind and Brain, 2019, 29, 75-89.	1.1	17
33	The Impact of Music on the Self in Dementia. Journal of Alzheimer's Disease, 2018, 61, 827-841.	1.2	57
34	On the enjoyment of violence and aggression in music. Comment on "An integrative review of the enjoyment of sadness associated with music―by Tuomas Eerola et al Physics of Life Reviews, 2018, 25, 128-130.	1.5	11
35	Syntactic and non-syntactic sources of interference by music on language processing. Scientific Reports, 2018, 8, 17918.	1.6	12
36	Characterization of Music and Photograph Evoked Autobiographical Memories in People with Alzheimer's Disease. Journal of Alzheimer's Disease, 2018, 66, 693-706.	1.2	28

William Forde Thompson

#	Article	IF	CITATIONS
37	Investigating the Role of the Primary Motor Cortex in Musical Creativity: A Transcranial Direct Current Stimulation Study. Frontiers in Psychology, 2018, 9, 1758.	1.1	7
38	Syntactic processing in music and language: Effects of interrupting auditory streams with alternating timbres. International Journal of Psychophysiology, 2018, 129, 31-40.	0.5	14
39	Syntactic processing in music and language: Parallel abnormalities observed in congenital amusia. NeuroImage: Clinical, 2018, 19, 640-651.	1.4	18
40	Listener Expertise Enhances Intelligibility of Vocalizations in Death Metal Music. Music Perception, 2018, 35, 527-539.	0.5	17
41	A nonmusician with severe Alzheimer's dementia learns a new song. Neurocase, 2017, 23, 36-40.	0.2	20
42	Pitch discrimination associated with phonological awareness: Evidence from congenital amusia. Scientific Reports, 2017, 7, 44285.	1.6	16
43	An investigation of spatial representation of pitch in individuals with congenital amusia. Quarterly Journal of Experimental Psychology, 2017, 70, 1867-1877.	0.6	3
44	Pitch contour impairment in congenital amusia: New insights from the Self-paced Audio-visual Contour Task (SACT). PLoS ONE, 2017, 12, e0179252.	1.1	7
45	Impaired Explicit Processing of Musical Syntax and Tonality in a Group of Mandarin-Speaking Congenital Amusics. Music Perception, 2016, 33, 401-413.	O.5	13
46	Prevalence of emotions, mechanisms, and motives in music listening: A comparison of individualist and collectivist cultures Psychomusicology: Music, Mind and Brain, 2016, 26, 293-326.	1.1	35
47	The influence of visual information on auditory processing in individuals with congenital amusia: An ERP study. NeuroImage, 2016, 135, 142-151.	2.1	11
48	Development of timing skills. , 2016, , 378-390.		0
49	Prodigies of music composition. , 2016, , 358-377.		1
50	Affective evaluation of simultaneous tone combinations in congenital amusia. Neuropsychologia, 2015, 78, 207-220.	0.7	23
51	Intonation processing deficits of emotional words among Mandarin Chinese speakers with congenital amusia: an ERP study. Frontiers in Psychology, 2015, 6, 385.	1.1	18
52	Melodic Contour Training and Its Effect on Speech in Noise, Consonant Discrimination, and Prosody Perception for Cochlear Implant Recipients. Behavioural Neurology, 2015, 2015, 1-10.	1.1	24
53	Effects of Emergent-Level Structure on Melodic Processing Difficulty. Music Perception, 2015, 33, 96-109.	0.5	5
54	The Healing Power of Music. Scientific American Mind, 2015, 26, 32-41.	0.0	16

#	Article	IF	CITATIONS
55	Common cues to emotion in the dynamic facial expressions of speech and song. Quarterly Journal of Experimental Psychology, 2015, 68, 952-970.	0.6	26
56	Human emotions track changes in the acoustic environment. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14563-14568.	3.3	51
57	The Pitch Imagery Arrow Task: Effects of Musical Training, Vividness, and Mental Control. PLoS ONE, 2015, 10, e0121809.	1.1	22
58	Augmenting melodic intonation therapy with non-invasive brain stimulation to treat impaired left-hemisphere function: two case studies. Frontiers in Psychology, 2014, 5, 37.	1.1	33
59	Singing emotionally: a study of pre-production, production, and post-production facial expressions. Frontiers in Psychology, 2014, 5, 262.	1.1	6
60	Timing skills and expertise: discrete and continuous timed movements among musicians and athletes. Frontiers in Psychology, 2014, 5, 1482.	1.1	20
61	A developmental study of the effect of music training on timed movements. Frontiers in Human Neuroscience, 2014, 8, 801.	1.0	7
62	The contributions of compositional structure and performance expression to the communication of emotion in music. Psychology of Music, 2014, 42, 503-524.	0.9	22
63	The effect of movement kinematics on predicting the timing of observed actions. Experimental Brain Research, 2014, 232, 1193-1206.	0.7	11
64	Intervals and Scales. , 2013, , 107-140.		19
65	Bridging two worlds that care about art: Psychological and historical approaches to art appreciation. Behavioral and Brain Sciences, 2013, 36, 159-160.	0.4	1
66			
	Composers and performers have different capacities to manipulate arousal and valence Psychomusicology: Music, Mind and Brain, 2013, 23, 137-150.	1.1	8
67	Composers and performers have different capacities to manipulate arousal and valence Psychomusicology: Music, Mind and Brain, 2013, 23, 137-150. Music, action, and affect. , 2013, , 197-212.	1.1	8
67 68	Composers and performers have different capacities to manipulate arousal and valence Psychomusicology: Music, Mind and Brain, 2013, 23, 137-150. Music, action, and affect., 2013, , 197-212. Emotional Communication in Speech and Music: The Role of Melodic and Rhythmic Contrasts. Frontiers in Psychology, 2013, 4, 184.	1.1	8 3 22
67 68 69	Composers and performers have different capacities to manipulate arousal and valencePsychomusicology: Music, Mind and Brain, 2013, 23, 137-150.Music, action, and affect., 2013, , 197-212.Emotional Communication in Speech and Music: The Role of Melodic and Rhythmic Contrasts. Frontiers in Psychology, 2013, 4, 184.Who Enjoys Listening to Sad Music and Why?. Music Perception, 2012, 29, 311-317.	1.1 1.1 0.5	8 3 22 199
67 68 69 70	Composers and performers have different capacities to manipulate arousal and valence Psychomusicology: Music, Mind and Brain, 2013, 23, 137-150.Music, action, and affect., 2013,, 197-212.Emotional Communication in Speech and Music: The Role of Melodic and Rhythmic Contrasts. Frontiers in Psychology, 2013, 4, 184.Who Enjoys Listening to Sad Music and Why?. Music Perception, 2012, 29, 311-317.Fast and loud background music disrupts reading comprehension. Psychology of Music, 2012, 40, 700-708.	1.1 1.1 0.5 0.9	8 3 22 199 115
 67 68 69 70 71 	Composers and performers have different capacities to manipulate arousal and valence Psychomusicology: Music, Mind and Brain, 2013, 23, 137-150.Music, action, and affect. , 2013, , 197-212.Emotional Communication in Speech and Music: The Role of Melodic and Rhythmic Contrasts. Frontiers in Psychology, 2013, 4, 184.Who Enjoys Listening to Sad Music and Why?. Music Perception, 2012, 29, 311-317.Fast and loud background music disrupts reading comprehension. Psychology of Music, 2012, 40, 700-708.The effect of intensity on relative pitch. Quarterly Journal of Experimental Psychology, 2012, 65, 2054-2072.	1.1 1.1 0.5 0.9	8 3 22 199 115 7

#	Article	IF	CITATIONS
73	VirSchool: The effect of background music and immersive display systems on memory for facts learned in an educational virtual environment. Computers and Education, 2012, 58, 490-500.	5.1	59
74	Discrimination of stress in speech and music: A mismatch negativity (<scp>MMN</scp>) study. Psychophysiology, 2012, 49, 1590-1600.	1.2	29
75	The Mechanism of Speech Processing in Congenital Amusia: Evidence from Mandarin Speakers. PLoS ONE, 2012, 7, e30374.	1.1	49
76	Continuation tapping to triggered melodies: motor resonance effects of melodic motion. Experimental Brain Research, 2012, 216, 51-60.	0.7	12
77	Composing by Listening. International Journal of Synthetic Emotions, 2012, 3, 48-67.	0.3	3
78	Experiential and Cognitive Changes Following Seven Minutes Exposure to Music and Speech. Music Perception, 2011, 28, 247-264.	0.5	56
79	Visual search for schematic emotional faces risks perceptual confound. Cognition and Emotion, 2011, 25, 573-584.	1.2	12
80	The Effects of Competition on Improvisers' Motivation, Stress, and Creative Performance. Creativity Research Journal, 2011, 23, 129-136.	1.7	44
81	Ideomotor effects of pitch on continuation tapping. Quarterly Journal of Experimental Psychology, 2011, 64, 381-393.	0.6	11
82	Music and Emotion: Psychological Considerations. , 2011, , 357-375.		8
83	Facial expressions of singers influence perceived pitch relations. Psychonomic Bulletin and Review, 2010, 17, 317-322.	1.4	35
84	Changing Musical Emotion: A Computational Rule System for Modifying Score and Performance. Computer Music Journal, 2010, 34, 41-64.	0.3	48
85	A comparison of the McGurk effect for spoken and sung syllables. Attention, Perception, and Psychophysics, 2010, 72, 1450-1454.	0.7	25
86	Effect of deviance direction and calculation method on duration and frequency mismatch negativity (MMN). Neuroscience Letters, 2010, 482, 71-75.	1.0	63
87	Melodic Accent as an Emergent Property of Tonal Motion. Empirical Musicology Review, 2010, 5, 94-107.	0.2	7
88	The emergence of music from the Theory of Mind. Musicae Scientiae, 2009, 13, 83-115.	2.2	56
89	Facial Expressions and Emotional Singing: A Study of Perception and Production with Motion Capture and Electromyography. Music Perception, 2009, 26, 475-488.	0.5	46
90	The effect of task and pitch structure on pitch-time interactions in music. Memory and Cognition, 2009, 37, 368-381.	0.9	35

#	Article	IF	CITATIONS
91	Pitch and time, tonality and meter: How do musical dimensions combine?. Journal of Experimental Psychology: Human Perception and Performance, 2009, 35, 1598-1617.	0.7	53
92	Audio-visual integration of emotional cues in song. Cognition and Emotion, 2008, 22, 1457-1470.	1.2	69
93	The role of signal detection and amplification in the induction of emotion by music. Behavioral and Brain Sciences, 2008, 31, 597-598.	0.4	13
94	An investigation of the role of background music in IVWs for learning. Research in Learning Technology, 2008, 16, 231-244.	0.5	13
95	Facing the Music. Psychological Science, 2007, 18, 756-757.	1.8	69
96	Sensitivity to Tonality across the Pitch Range. Perception, 2007, 36, 781-790.	0.5	19
97	Multimodal Affective Interaction. Music Perception, 2006, 24, 89-94.	0.5	16
98	A Comparison of Acoustic Cues in Music and Speech for Three Dimensions of Affect. Music Perception, 2006, 23, 319-330.	0.5	272
99	Decoding speech prosody in five languages. Semiotica, 2006, 2006, .	0.2	73
100	Music Performance. Advances in Cognitive Psychology, 2006, 2, 99-102.	0.2	6
101	An interval size illusion: The influence of timbre on the perceived size of melodic intervals. Perception & Psychophysics, 2005, 67, 559-568.	2.3	62
102	The subjective size of melodic intervals over a two-octave range. Psychonomic Bulletin and Review, 2005, 12, 1068-1075.	1.4	30
103	Seeing music performance: Visual inï¬,uences on perception and experience. Semiotica, 2005, 2005, .	0.2	73
104	Recognition of emotion in Japanese, Western, and Hindustani music by Japanese listeners1. Japanese Psychological Research, 2004, 46, 337-349.	0.4	139
105	Deficits in facial emotion perception in adults with recent traumatic brain injury. Neuropsychologia, 2004, 42, 133-141.	0.7	132
106	Decoding speech prosody: Do music lessons help?. Emotion, 2004, 4, 46-64.	1.5	253
107	Perceiving Prosody in Speech. Annals of the New York Academy of Sciences, 2003, 999, 530-532.	1.8	52
108	A Matter of Taste: Evaluating Improvised Music. Creativity Research Journal, 2003, 15, 287-296.	1.7	21

#	Article	IF	CITATIONS
109	Do conjunction errors in auditory recognition imply feature migration?. Canadian Journal of Experimental Psychology, 2003, 57, 125-130.	0.7	4
110	A Matter of Taste: Evaluating Improvised Music. Creativity Research Journal, 2003, 15, 287-296.	1.7	11
111	Effects of Musical Tempo and Mode on Arousal, Mood, and Spatial Abilities. Music Perception, 2002, 20, 151-171.	0.5	421
112	Arousal, Mood, and The Mozart Effect. Psychological Science, 2001, 12, 248-251.	1.8	530
113	Illusory conjunctions of pitch and duration in unfamiliar tone sequences Journal of Experimental Psychology: Human Perception and Performance, 2001, 27, 128-140.	0.7	23
114	Expectancies generated by recent exposure to melodic sequences. Memory and Cognition, 2000, 28, 547-555.	0.9	47
115	A Cross-Cultural Investigation of the Perception of Emotion in Music: Psychophysical and Cultural Cues. Music Perception, 1999, 17, 43-64.	0.5	426
116	Assessing Music Performance: Issues and Influences. Research Studies in Music Education, 1998, 10, 12-24.	0.8	49
117	The Adjudication of Six Performances of a Chopin Etude: A Study of Expert Knowledge. Psychology of Music, 1998, 26, 154-174.	0.9	32
118	Expectancy in Bohemian Folk Song Melodies: Evaluation of Implicative Principles for Implicative and Closural Intervals. Music Perception, 1998, 15, 231-252.	0.5	28
119	Perceptual Judgments of Triads and Dyads: Assessment of a Psychoacoustic Model. Music Perception, 1997, 14, 263-280.	0.5	17
120	Music performance and the perception of key Journal of Experimental Psychology: Human Perception and Performance, 1997, 23, 116-135.	0.7	15
121	Expectancies generated by melodic intervals: Evaluation of principles of melodic implication in a melody-completion task. Perception & Psychophysics, 1997, 59, 1069-1076.	2.3	45
122	A Review and Empirical Assessment. Journal of the American Musicological Society, 1996, 49, 127-145.	0.1	3
123	Sensitivity to combinations of musical parameters: Pitch with duration, and pitch pattern with durational pattern. Perception & Psychophysics, 1994, 56, 363-374.	2.3	26
124	Modeling perceived relationships between melody, harmony, and key. Perception & Psychophysics, 1993, 53, 13-24.	2.3	17
125	Pitch pattern, durational pattern, and timbre: A study of the perceptual integration of auditory qualities Psychomusicology: Music, Mind and Brain, 1993, 12, 3-21.	1.1	8
126	Perceived Key Movement in Four-Voice Harmony and Single Voices. Music Perception, 1992, 9, 427-438.	0.5	34

#	Article	IF	CITATIONS
127	Can Composers Express Emotions through Music?. Empirical Studies of the Arts, 1992, 10, 79-89.	0.9	73
128	Asymmetry of perceived key movement in chorale sequences: Converging evidence from a probe-tone analysis. Psychological Research, 1992, 54, 51-59.	1.0	51
129	A perceptual investigation of polytonality. Psychological Research, 1992, 54, 60-71.	1.0	12
130	Sensitivity to Key Change in Chorale Sequences: A Comparison of Single Voices and Four-Voice Harmony. Music Perception, 1989, 7, 151-168.	0.5	39
131	Composer-Specific Aspects of Musical Performance: An Evaluation of Clynes's Theory of Pulse for Performances of Mozart and Beethoven. Music Perception, 1989, 7, 15-42.	0.5	19