Marcy E Litvak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4433212/publications.pdf

Version: 2024-02-01

81889 74160 6,040 94 39 75 citations g-index h-index papers 97 97 97 8329 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Temperature memory and non-structural carbohydrates mediate legacies of a hot drought in trees across the southwestern USA. Tree Physiology, 2022, 42, 71-85.	3.1	17
2	Satellite solar-induced chlorophyll fluorescence and near-infrared reflectance capture complementary aspects of dryland vegetation productivity dynamics. Remote Sensing of Environment, 2022, 270, 112858.	11.0	26
3	Informing Natureâ€based Climate Solutions for the United States with the bestâ€available science. Global Change Biology, 2022, 28, 3778-3794.	9.5	28
4	Exceptional heat and atmospheric dryness amplified losses of primary production during the 2020 U.S. Southwest hot drought. Global Change Biology, 2022, 28, 4794-4806.	9.5	46
5	Sensitivity of soil organic matter to climate and fire in a desert grassland. Biogeochemistry, 2021, 156, 59-74.	3.5	7
6	Temporal controls on crown nonstructural carbohydrates in southwestern US tree species. Tree Physiology, 2021, 41, 388-402.	3.1	12
7	Recent land cover changes in the Southwestern US lead to an increase in surface temperature. Agricultural and Forest Meteorology, 2021, 297, 108246.	4.8	13
8	Seasonal Precipitation and Soil Moisture Relationships Across Forests and Woodlands in the Southwestern United States. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005986.	3.0	11
9	SoDaH: the SOils DAta Harmonization database, an open-source synthesis of soil data from research networks, version 1.0. Earth System Science Data, 2021, 13, 1843-1854.	9.9	17
10	State changes: insights from the U.S. Long Term Ecological Research Network. Ecosphere, 2021, 12, e03433.	2.2	6
11	Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites. Agricultural and Forest Meteorology, 2021, 301-302, 108350.	4.8	125
12	Future fire-driven landscape changes along a southwestern US elevation gradient. Climatic Change, 2021, 166, 1.	3.6	2
13	Divergent responses of primary production to increasing precipitation variability in global drylands. Global Change Biology, 2021, 27, 5225-5237.	9.5	31
14	Dynamic global vegetation models underestimate net CO ₂ flux mean and inter-annual variability in dryland ecosystems. Environmental Research Letters, 2021, 16, 094023.	5.2	23
15	Watching plants' dance: movements of live and dead branches linked to atmospheric water demand. Ecosphere, 2021, 12, e03705.	2.2	1
16	Seasonality in aerodynamic resistance across a range of North American ecosystems. Agricultural and Forest Meteorology, 2021, 310, 108613.	4.8	14
17	Optimizing Carbon Cycle Parameters Drastically Improves Terrestrial Biosphere Model Underestimates of Dryland Mean Net CO ₂ Flux and its Interâ€Annual Variability. Journal of Geophysical Research G: Biogeosciences, 2021, 126, .	3.0	8
18	The aboveground and belowground growth characteristics of juvenile conifers in the southwestern United States. Ecosphere, 2021, 12, e03839.	2.2	8

#	Article	IF	CITATIONS
19	Improved dryland carbon flux predictions with explicit consideration of water-carbon coupling. Communications Earth $\&$ Environment, 2021, 2, .	6.8	16
20	Ecosystemâ€Level Energy and Water Budgets Are Resilient to Canopy Mortality in Sparse Semiarid Biomes. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2020JG005858.	3.0	2
21	Synergistic use of SMAP and OCO-2 data in assessing the responses of ecosystem productivity to the 2018 U.S. drought. Remote Sensing of Environment, 2020, 251, 112062.	11.0	34
22	Montane forest productivity across a semiarid climatic gradient. Global Change Biology, 2020, 26, 6945-6958.	9.5	22
23	Atmosphereâ€Soil Interactions Govern Ecosystem Flux Sensitivity to Environmental Conditions in Semiarid Woody Ecosystems Over Varying Timescales. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JG005554.	3.0	6
24	Allometric Relationships for Predicting Aboveground Biomass and Sapwood Area of Oneseed Juniper (Juniperus monosperma) Trees. Frontiers in Plant Science, 2020, 11, 94.	3.6	10
25	A 3-dimensional model of Pinus edulis and Juniperus monosperma root distributions in New Mexico: implications for soil water dynamics. Plant and Soil, 2020, 450, 337-355.	3.7	14
26	Testing water fluxes and storage from two hydrology configurations within the ORCHIDEE land surface model across US semi-arid sites. Hydrology and Earth System Sciences, 2020, 24, 5203-5230.	4.9	16
27	Long-Term (1986–2015) Crop Water Use Characterization over the Upper Rio Grande Basin of United States and Mexico Using Landsat-Based Evapotranspiration. Remote Sensing, 2019, 11, 1587.	4.0	41
28	Sensitivity of dryland plant allometry to climate. Functional Ecology, 2019, 33, 2290-2303.	3.6	24
29	Integrating Speciesâ€5pecific Information in Models Improves Regional Projections Under Climate Change. Geophysical Research Letters, 2019, 46, 6554-6562.	4.0	10
30	Allometric relationships for Quercus gambelii and Robinia neomexicana for biomass estimation following disturbance. Ecosphere, 2019, 10, e02905.	2.2	9
31	Snowmeltâ€Driven Tradeâ€Offs Between Early and Late Season Productivity Negatively Impact Forest Carbon Uptake During Drought. Geophysical Research Letters, 2018, 45, 3087-3096.	4.0	31
32	Conifer radial growth response to recent seasonal warming and drought from the southwestern USA. Forest Ecology and Management, 2018, 418, 55-62.	3.2	30
33	Chlorophyll Fluorescence Better Captures Seasonal and Interannual Gross Primary Productivity Dynamics Across Dryland Ecosystems of Southwestern North America. Geophysical Research Letters, 2018, 45, 748-757.	4.0	109
34	Climate sensitivity functions and net primary production: A framework for incorporating climate mean and variability. Ecology, 2018, 99, 576-582.	3.2	73
35	A net ecosystem carbon budget for snow dominated forested headwater catchments: linking water and carbon fluxes to critical zone carbon storage. Biogeochemistry, 2018, 138, 225-243.	3.5	17
36	Shrubland carbon sink depends upon winter water availability in the warm deserts of North America. Agricultural and Forest Meteorology, 2018, 249, 407-419.	4.8	49

#	Article	IF	CITATIONS
37	Reevaluating growing season length controls on net ecosystem production in evergreen conifer forests. Scientific Reports, 2018, 8, 17973.	3.3	13
38	Evaluation of a Data Assimilation System for Land Surface Models Using CLM4.5. Journal of Advances in Modeling Earth Systems, 2018, 10, 2471-2494.	3.8	54
39	Transport in a coordinated soil-root-xylem-phloem leaf system. Advances in Water Resources, 2018, 119, 1-16.	3.8	31
40	Biocrust contribution to ecosystem carbon fluxes varies along an elevational gradient. Ecosphere, 2018, 9, e02315.	2.2	16
41	Plant, microbial and ecosystem carbon use efficiencies interact to stabilize microbial growth as a fraction of gross primary production. New Phytologist, 2017, 214, 1518-1526.	7.3	62
42	Prototype campaign assessment of disturbanceâ€induced tree loss effects on surface properties for atmospheric modeling. Ecosphere, 2017, 8, e01698.	2.2	5
43	Assessing drought-induced change in a piñon-juniper woodland with Landsat: a multiple endmember spectral mixture analysis approach. International Journal of Remote Sensing, 2017, 38, 4156-4176.	2.9	7
44	<scp>CO</scp> ₂ exchange and evapotranspiration across dryland ecosystems of southwestern North America. Global Change Biology, 2017, 23, 4204-4221.	9.5	164
45	Global patterns of drought recovery. Nature, 2017, 548, 202-205.	27.8	560
46	Tree Mortality Decreases Water Availability and Ecosystem Resilience to Drought in Piñonâ€Juniper Woodlands in the Southwestern U.S Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3343-3361.	3.0	25
47	Evaluating the effect of alternative carbon allocation schemes in a land surface modelÂ(CLM4.5) on carbon fluxes, pools, and turnover in temperate forests. Geoscientific Model Development, 2017, 10, 3499-3517.	3.6	32
48	Remote Sensing Based Simple Models of GPP in Both Disturbed and Undisturbed Piñon-Juniper Woodlands in the Southwestern U.S Remote Sensing, 2016, 8, 20.	4.0	13
49	Woody Biomass Estimation in a Southwestern U.S. Juniper Savanna Using LiDAR-Derived Clumped Tree Segmentation and Existing Allometries. Remote Sensing, 2016, 8, 453.	4.0	24
50	Terrestrial carbon balance in a drier world: the effects of water availability in southwestern North America. Global Change Biology, 2016, 22, 1867-1879.	9.5	142
51	Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5880-5885.	7.1	340
52	The sensitivity of carbon exchanges in Great Plains grasslands to precipitation variability. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 280-294.	3.0	33
53	Toward accounting for ecoclimate teleconnections: intra- and inter-continental consequences of altered energy balance after vegetation change. Landscape Ecology, 2016, 31, 181-194.	4.2	53
54	Drought-induced piñon mortality alters the seasonal dynamics of microbial activity in piñon–juniper woodland. Soil Biology and Biochemistry, 2016, 92, 91-101.	8.8	5

#	Article	IF	CITATIONS
55	A multisite analysis of temporal random errors in soil CO ₂ efflux. Journal of Geophysical Research G: Biogeosciences, 2015, 120, 737-751.	3.0	17
56	Critical Zone Services: Expanding Context, Constraints, and Currency beyond Ecosystem Services. Vadose Zone Journal, 2015, 14, vzj2014.10.0142.	2.2	60
57	The ecological role of small rainfall events in a desert grassland. Ecohydrology, 2015, 8, 1614-1622.	2.4	34
58	Soil moisture response to snowmelt timing in mixedâ€conifer subalpine forests. Hydrological Processes, 2015, 29, 2782-2798.	2.6	92
59	Influence of ENSO and the NAO on terrestrial carbon uptake in the Texasâ€northern Mexico region. Global Biogeochemical Cycles, 2015, 29, 1247-1265.	4.9	29
60	Global satellite monitoring of climate-induced vegetation disturbances. Trends in Plant Science, 2015, 20, 114-123.	8.8	183
61	Grassland to shrubland state transitions enhance carbon sequestration in the northern Chihuahuan Desert. Global Change Biology, 2015, 21, 1226-1235.	9.5	91
62	Climatic and landscape influences on soil moisture are primary determinants of soil carbon fluxes in seasonally snow-covered forest ecosystems. Biogeochemistry, 2015, 123, 447-465.	3.5	50
63	Root-associated fungal community response to drought-associated changes in vegetation community. Mycologia, 2015, 107, 1089-1104.	1.9	12
64	Simulating the Effect of Vegetation in Formation of Pedogenic Carbonate. Soil Science Society of America Journal, 2014, 78, 914-924.	2.2	28
65	Extracellular enzyme kinetics scale with resource availability. Biogeochemistry, 2014, 121, 287-304.	3.5	147
66	Speciesâ€specific water use by woody plants on the Edwards Plateau, Texas. Ecohydrology, 2014, 7, 278-290.	2.4	10
67	Stream water carbon controls in seasonally snow-covered mountain catchments: impact of inter-annual variability of water fluxes, catchment aspect and seasonal processes. Biogeochemistry, 2014, 118, 273-290.	3.5	60
68	Waterâ€storage capacity controls energy partitioning and water use in karst ecosystems on the Edwards Plateau, Texas. Ecohydrology, 2014, 7, 127-138.	2.4	57
69	Small-scale variability in water storage and plant available water in shallow, rocky soils. Plant and Soil, 2014, 385, 193-204.	3.7	23
70	Climate Change Impacts on Future Carbon Stores and Management of Warm Deserts of the United States. Rangelands, 2014, 36, 16-24.	1.9	12
71	Detecting mortality induced structural and functional changes in a piñon-juniper woodland using Landsat and RapidEye time series. Remote Sensing of Environment, 2014, 151, 102-113.	11.0	26
72	Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New Phytologist, 2012, 194, 775-783.	7.3	111

#	Article	IF	CITATIONS
73	Deep Autotrophic Soil Respiration in Shrubland and Woodland Ecosystems in Central New Mexico. Ecosystems, 2012, 15, 83-96.	3.4	27
74	Assessing net ecosystem carbon exchange of U.S. terrestrial ecosystems by integrating eddy covariance flux measurements and satellite observations. Agricultural and Forest Meteorology, 2011, 151, 60-69.	4.8	157
75	Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland. Remote Sensing of Environment, 2011, 115, 3640-3646.	11.0	194
76	Differential responses of production and respiration to temperature and moisture drive the carbon balance across a climatic gradient in New Mexico. Global Change Biology, 2011, 17, 410-424.	9.5	148
77	Simple assessment of needleleaf and broadleaf chlorophyll content using a flatbed color scanner. Canadian Journal of Forest Research, 2011, 41, 1445-1451.	1.7	6
78	How Water, Carbon, and Energy Drive Critical Zone Evolution: The Jemez–Santa Catalina Critical Zone Observatory. Vadose Zone Journal, 2011, 10, 884-899.	2.2	111
79	Positive feedback between microclimate and shrub encroachment in the northern Chihuahuan desert. Ecosphere, 2010, 1, 1-11.	2.2	290
80	On the impact of shrub encroachment on microclimate conditions in the northern Chihuahuan desert. Journal of Geophysical Research, 2010, 115 , .	3.3	56
81	Ecohydrological controls on snowmelt partitioning in mixedâ€conifer subâ€alpine forests. Ecohydrology, 2009, 2, 129-142.	2.4	137
82	Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS and AmeriFlux data. Agricultural and Forest Meteorology, 2008, 148, 1827-1847.	4.8	221
83	Factors that control Typha marsh evapotranspiration. Aquatic Botany, 2007, 86, 97-106.	1.6	72
84	An eddy covariance mesonet to measure the effect of forest age on land-atmosphere exchange. Global Change Biology, 2006, 12, 2146-2162.	9.5	169
85	Coupling between Land Ecosystems and the Atmospheric Hydrologic Cycle through Biogenic Aerosol Pathways. Bulletin of the American Meteorological Society, 2005, 86, 1738-1742.	3.3	43
86	Supply and demand processes as controls over needle monoterpene synthesis and concentration in Douglas fir [Pseudotsuga menziesii (Mirb.) Franco]. Oecologia, 2002, 132, 382-391.	2.0	44
87	Monoterpene emission from coniferous trees in response to elevated CO2 concentration and climate warming. Global Change Biology, 1999, 5, 252-267.	9.5	83
88	Patterns of induced and constitutive monoterpene production in conifer needles in relation to insect herbivory. Oecologia, 1998, 114, 531-540.	2.0	169
89	The response of isoprene emission rate and photosynthetic rate to photon flux and nitrogen supply in aspen and white oak trees. Plant, Cell and Environment, 1996, 19, 549-559.	5.7	102
90	Plant growth and defense: reply to Herms and Mattson. Trends in Ecology and Evolution, 1995, 10, 39.	8.7	2

#	Article	IF	CITATIONS
91	Environmental and developmental controls over the seasonal pattern of isoprene emission from aspen leaves. Oecologia, 1994, 99, 260-270.	2.0	230
92	Plant chemical defense: monoterpenes and the growth-differentiation balance hypothesis. Trends in Ecology and Evolution, 1994, 9, 58-61.	8.7	133
93	Isoprene Emission from Velvet Bean Leaves (Interactions among Nitrogen Availability, Growth Photon) Tj ETQq1	1 0,78431 4.8	.4 rgBT /Overl
94	Allometric Relationships for Predicting Aboveground Biomass, Sapwood, and Leaf Area of Two-Needle Piñon Pine (<i>Pinus edulis</i>) Amid Open-Grown Conditions in Central New Mexico. Forest Science, 0, , .	1.0	2