Joanna Wiå**š**iewska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4432965/publications.pdf

Version: 2024-02-01

933447 940533 33 286 10 16 citations g-index h-index papers 33 33 33 422 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Sawhorse-type ruthenium complexes with triazolopyrimidine ligands – what do they represent in terms of cytotoxic and CORM compounds?. Dalton Transactions, 2022, 51, 8804-8820.	3.3	4
2	New organometallic ruthenium(ii) complexes with purine analogs – a wide perspective on their biological application. Dalton Transactions, 2021, 50, 5557-5573.	3.3	7
3	Nanoencapsulation of a ruthenium(<scp>ii</scp>) complex with triazolopyrimidine in liposomes as a tool for improving its anticancer activity against melanoma cell lines. Dalton Transactions, 2020, 49, 1207-1219.	3. 3	24
4	Synthesis, structure and biological evaluation of ruthenium(III) complexes of triazolopyrimidines with anticancer properties. Journal of Biological Inorganic Chemistry, 2020, 25, 109-124.	2.6	9
5	The hydrolysis of a ruthenium(III) complex with triazolopyrimidine ligands and mechanistic insights into its anticancer activity. Inorganic Chemistry Communication, 2019, 109, 107567.	3.9	2
6	The reduction of ruthenium(III) complexes with triazolopyrimidine ligands by ascorbic acid and mechanistic insight into their action in anticancer therapy. Inorganica Chimica Acta, 2019, 484, 305-310.	2.4	15
7	Dicarboxylato platinum(<scp>ii</scp>) complexes containing dimethyl sulfoxide and triazolopyrimidine as potential anticancer agents: synthesis, structural and biological studies in solution. New Journal of Chemistry, 2018, 42, 8113-8122.	2.8	20
8	In search of new anticancer drug $\hat{a} \in \hat{u}$ Dimethylsulfoxide ruthenium(III) complex with bulky triazolopyrimidine derivative and preliminary studies towards understanding the mode of action. Polyhedron, 2018, 141, 239-246.	2.2	10
9	Rational design of dicarboxylato platinum(II) complexes with purine-mimetic ligands as novel anticancer agents. Journal of Inorganic Biochemistry, 2017, 172, 34-45.	3.5	25
10	Strategies for overcoming tropical disease by ruthenium complexes with purine analog: Application against Leishmania spp. and Trypanosoma cruzi. Journal of Inorganic Biochemistry, 2017, 176, 144-155.	3. 5	27
11	Ruthenium(III) complexes with monodentate 5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7(4H)-one: Structural characterization, interaction with DNA and proteins. Inorganica Chimica Acta, 2016, 443, 170-178.	2.4	13
12	A Mechanistic Study on the Oxidative Degradation of Dibenzazepine Derivatives by Manganese(III) Complexes in Acidic Sulfate Media. International Journal of Chemical Kinetics, 2015, 47, 606-619.	1.6	1
13	Acetate platinum(II) compound with 5,7-ditertbutyl-1,2,4-triazolo[1,5- <i>a</i>)pyrimidine that overcomes cisplatin resistance: structural characterization, <i>in vitro</i> cytotoxicity, and kinetic studies. Journal of Coordination Chemistry, 2015, 68, 3193-3208.	2.2	16
14	Mechanism of the oxidative degradation of dibenzoazepine derivatives via manganese(III) complexes in acidic phosphate media. Reaction Kinetics, Mechanisms and Catalysis, 2013, 108, 1-16.	1.7	1
15	The oxidative degradation of dibenzoazepine derivatives by cerium(<scp>iv</scp>) complexes in acidic sulfate media. Dalton Transactions, 2012, 41, 1259-1267.	3.3	17
16	The oxidative degradation and C–C coupling reaction of dibenzoazepine derivatives by peroxydisulfate ion and sulfate radical in aqueous media. Reaction Kinetics, Mechanisms and Catalysis, 2012, 107, 1-17.	1.7	2
17	Effect of co-ligands on photoredox pathways in Cr(III) oxalate complexes. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 250, 78-84.	3.9	6

Kinetics and mechanism of base hydrolysis of mer-[Cr(pic)3]0 and [Cr(ox)2(pic)]2â⁻² (picÂ=Âpicolinate,) Tj ETQq0 Q.Q rgBT /Qverlock 10

#	Article	IF	CITATIONS
19	A mechanistic study on the disproportionation and oxidative degradation of phenothiazine derivatives by manganese(III) complexes in phosphate acidic media. Transition Metal Chemistry, 2011, 36, 767-774.	1.4	7
20	Formation of a promazine radical and promazine 5â€oxide in the reaction of promazine with hydrogen peroxide: Mechanistic insight from kinetic and EPR measurements. International Journal of Chemical Kinetics, 2010, 42, 1-9.	1.6	3
21	Photoredox reactions of Cr(III) mixed-ligand complexes. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 209, 121-127.	3.9	8
22	Kinetic studies on promazine oxidation by FellI/Cull in acidic aqueous bromide solutions. Spectroscopic and kinetic non-additivity as evidence for the Cull–Br–FellI-type heterobimetallic complex formation. Transition Metal Chemistry, 2008, 33, 843-847.	1.4	0
23	Kinetic study of the promazine oxidation to promazine 5-oxide by trisoxalatocobaltate(III) in basic aqueous media. Transition Metal Chemistry, 2007, 32, 107-111.	1.4	1
24	Kinetic and ESR studies of the Cull-halides mediated oxidation of promazine by dioxygen in acidic aqueous solutions. Transition Metal Chemistry, 2007, 32, 857-863.	1.4	6
25	Kinetic and mechanistic studies on the electron-transfer reactions between diaquabisethylenediaminecobalt(III) and ethylenediaminetetraacetatocobaltate(III) with promazine in acidic aqueous media. Transition Metal Chemistry, 2007, 32, 811-815.	1.4	1
26	Mechanistic Study on the Oxidation of Promazine and Chlorpromazine by Hexaimidazolcobalt(III) in Acidic Aqueous Media. Transition Metal Chemistry, 2006, 31, 232-236.	1.4	7
27	Mechanistic Insight from a Volume Profile for Electron Transfer Between Promethazine and Hexaaquairon(III). Bioinorganic Reaction Mechanisms, 2006, 6, 1-8.	0.4	0
28	Mechanistic Insight from a Volume Profile for Electron Transfer between Promazine and Hexaaquairon(III). Inorganic Chemistry, 2002, 41, 3802-3804.	4.0	10
29	Title is missing!. Transition Metal Chemistry, 2000, 25, 363-368.	1.4	1
30	The crystal structures of bis(oxalato)chromium(III) complexes with histamine and B6 vitamin: Na[Cr(ox)2(hm)]·3H2O and Na[Cr(ox)2(PM)]·H2O (hm, histamine; PM, pyridoxamine). Polyhedron, 1999, 18, 2001-2007.	2.2	22
31	Title is missing!. Transition Metal Chemistry, 1998, 23, 511-515.	1.4	5
32	Title is missing!. Transition Metal Chemistry, 1997, 22, 229-233.	1.4	6
33	Title is missing!. Transition Metal Chemistry, 1997, 22, 27-32.	1.4	5