
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4432841/publications.pdf Version: 2024-02-01

Сним-имс им

#	Article	IF	CITATIONS
1	Heterostructured Ceria–Titania-Supported Platinum Catalysts for the Water Gas Shift Reaction. ACS Applied Materials & Interfaces, 2022, 14, 8575-8586.	8.0	18
2	Partially sintered copper‒ceria as excellent catalyst for the high-temperature reverse water gas shift reaction. Nature Communications, 2022, 13, 867.	12.8	86
3	Catalytically efficient Ni-NiOx-Y2O3 interface for medium temperature water-gas shift reaction. Nature Communications, 2022, 13, 2443.	12.8	25
4	Small-sized cuprous oxide species on silica boost acrolein formation via selective oxidation of propylene. Chinese Journal of Catalysis, 2021, 42, 310-319.	14.0	7
5	The Effect of Hydrogenated TiO ₂ to the Au/TiO ₂ Catalyst in Catalyzing CO Oxidation. Langmuir, 2021, 37, 3270-3280.	3.5	9
6	Facile Fabrication of CeO ₂ -Al ₂ O ₃ Hollow Sphere with Atomically Dispersed Fe via Spray Pyrolysis. Inorganic Chemistry, 2021, 60, 5183-5189.	4.0	4
7	Au/La-CeO catalyst for CO oxidation: Effect of different atmospheres pretreatment on gold state ― Commemorating the 100th anniversary of the birth of Academician Guangxian Xu. Journal of Rare Earths, 2021, 39, 364-373.	4.8	5
8	Unique structure of active platinum-bismuth site for oxidation of carbon monoxide. Nature Communications, 2021, 12, 3342.	12.8	32
9	<scp>Co_{<i>a</i>}Sm_{<i>b</i>}O_{<i>x</i>}</scp> Catalyst with Excellent Catalytic Performance for <scp>NH₃</scp> Decomposition. Chinese Journal of Chemistry, 2021, 39, 2359-2366.	4.9	6
10	CO2 methanation catalyzed by a Fe-Co/Al2O3 catalyst. Journal of Environmental Chemical Engineering, 2021, 9, 105594.	6.7	18
11	<i>In Situ</i> Generation of the Surface Oxygen Vacancies in a Copper–Ceria Catalyst for the Water–Gas Shift Reaction. Langmuir, 2021, 37, 10499-10509.	3.5	15
12	Spatial confinement and electron transfer moderating Mo N bond strength for superior ammonia decomposition catalysis. Applied Catalysis B: Environmental, 2021, 294, 120254.	20.2	31
13	Very high loading oxidized copper supported on ceria to catalyze the water-gas shift reaction. Journal of Catalysis, 2021, 402, 83-93.	6.2	18
14	Magnetic Frustration in a Zeolite. Chemistry of Materials, 2021, 33, 9725-9731.	6.7	1
15	Ceria-supported ruthenium clusters transforming from isolated single atoms for hydrogen production via decomposition of ammonia. Applied Catalysis B: Environmental, 2020, 268, 118424.	20.2	83
16	Intrinsically Active Surface in a Pt/γ-Mo ₂ N Catalyst for the Water–Gas Shift Reaction: Molybdenum Nitride or Molybdenum Oxide?. Journal of the American Chemical Society, 2020, 142, 13362-13371.	13.7	41
17	Highly Efficient CuO/α-MnO ₂ Catalyst for Low-Temperature CO Oxidation. Langmuir, 2020, 36, 11196-11206.	3.5	33
18	N-Coordinated Dual-Metal Single-Site Catalyst for Low-Temperature CO Oxidation. ACS Catalysis, 2020, 10, 2754-2761.	11.2	112

#	Article	IF	CITATIONS
19	Insights into facet-dependent reactivity of CuO–CeO2 nanocubes and nanorods as catalysts for CO oxidation reaction. Chinese Journal of Catalysis, 2020, 41, 1017-1027.	14.0	41
20	Effects of Hydrogen and Hydrothermal Pretreatments on a Silica-Supported Copper Catalyst for CO Oxidation: Copper Hydroxy Active Species. Journal of Physical Chemistry C, 2020, 124, 25270-25281.	3.1	9
21	Construction of stabilized bulk-nano interfaces for highly promoted inverse CeO2/Cu catalyst. Nature Communications, 2019, 10, 3470.	12.8	59
22	The effect of reactants adsorption and products desorption for Au/TiO2 in catalyzing CO oxidation. Journal of Catalysis, 2019, 376, 134-145.	6.2	22
23	Hydrogen production via catalytic decomposition of NH3 using promoted MgO-supported ruthenium catalysts. Science China Chemistry, 2019, 62, 1625-1633.	8.2	29
24	Construction of Active Site in a Sintered Copper–Ceria Nanorod Catalyst. Journal of the American Chemical Society, 2019, 141, 17548-17557.	13.7	94
25	Use of fusion transcription factors to reprogram cellulase transcription and enable efficient cellulase production in Trichoderma reesei. Biotechnology for Biofuels, 2019, 12, 244.	6.2	24
26	Transition metal nanoparticles supported La-promoted MgO as catalysts for hydrogen production via catalytic decomposition of ammonia. Journal of Energy Chemistry, 2019, 38, 41-49.	12.9	53
27	CeO ₂ @SiO ₂ Core–Shell Nanostructure-Supported CuO as High-Temperature-Tolerant Catalysts for CO Oxidation. Langmuir, 2019, 35, 8658-8666.	3.5	13
28	Component synergy and armor protection induced superior catalytic activity and stability of ultrathin Co-Fe spinel nanosheets confined in mesoporous silica shells for ammonia decomposition reaction. Applied Catalysis B: Environmental, 2019, 253, 121-130.	20.2	32
29	Facile Synthesis of Stable MO ₂ N Nanobelts with High Catalytic Activity for Ammonia Decomposition. Chinese Journal of Chemistry, 2019, 37, 364-372.	4.9	14
30	Effect of Structural Evolution of Gold Species Supported on Ceria in Catalyzing CO Oxidation. Journal of Physical Chemistry C, 2019, 123, 9001-9012.	3.1	28
31	Direct Identification of Active Surface Species for the Water–Gas Shift Reaction on a Gold–Ceria Catalyst. Journal of the American Chemical Society, 2019, 141, 4613-4623.	13.7	139
32	Au/TiO ₂ Catalysts for CO Oxidation: Effect of Gold State to Reactivity. Journal of Physical Chemistry C, 2018, 122, 4928-4936.	3.1	40
33	Promoted Cu-Fe3O4 catalysts for low-temperature water gas shift reaction: Optimization of Cu content. Applied Catalysis B: Environmental, 2018, 226, 182-193.	20.2	70
34	Hydroxyl-rich ceriaÂhydrate nanoparticles enhancing the alcohol electrooxidation performance of Pt catalysts. Journal of Materials Chemistry A, 2018, 6, 2318-2326.	10.3	43
35	Effect of Nickel Oxide Doping to Ceria-Supported Gold Catalyst for CO Oxidation and Water-Gas Shift Reactions. Catalysts, 2018, 8, 584.	3.5	5
36	Pt-Embedded CuO _{<i>x</i>} –CeO ₂ Multicore–Shell Composites: Interfacial Redox Reaction-Directed Synthesis and Composition-Dependent Performance for CO Oxidation. ACS Applied Materials & Interfaces, 2018, 10, 34172-34183.	8.0	29

#	Article	IF	CITATIONS
37	Nanoceria Supported Gold Catalysts for CO Oxidation. Chinese Journal of Chemistry, 2018, 36, 639-643.	4.9	11
38	Metal-organic-framework derived controllable synthesis of mesoporous copper-cerium oxide composite catalysts for the preferential oxidation of carbon monoxide. Fuel, 2018, 229, 217-226.	6.4	50
39	Thermally stable and highly active Pt/CeO ₂ @SiO ₂ catalysts with a porous/hollow structure. Catalysis Science and Technology, 2018, 8, 4413-4419.	4.1	15
40	Promoted porous Co3O4-Al2O3 catalysts for ammonia decomposition. Science China Chemistry, 2018, 61, 1389-1398.	8.2	26
41	Crystal Plane Effect of Ceria on Supported Copper Oxide Cluster Catalyst for CO Oxidation: Importance of Metal–Support Interaction. ACS Catalysis, 2017, 7, 1313-1329.	11.2	301
42	Fe- and Co-doped lanthanum oxides catalysts for ammonia decomposition: Structure and catalytic performances. Journal of Rare Earths, 2017, 35, 15-23.	4.8	25
43	Synthesis and metal–support interaction of subnanometer copper–palladium bimetallic oxide clusters for catalytic oxidation of carbon monoxide. Inorganic Chemistry Frontiers, 2017, 4, 668-674.	6.0	18
44	Co3O4-Al2O3 mesoporous hollow spheres as efficient catalyst for Fischer-Tropsch synthesis. Applied Catalysis B: Environmental, 2017, 211, 176-187.	20.2	41
45	Boosting Cu-Ce interaction in CuxO/CeO2 nanocube catalysts for enhanced catalytic performance of preferential oxidation of CO in H2-rich gases. Molecular Catalysis, 2017, 436, 90-99.	2.0	42
46	Catalytically active ceria-supported cobalt–manganese oxide nanocatalysts for oxidation of carbon monoxide. Physical Chemistry Chemical Physics, 2017, 19, 14533-14542.	2.8	23
47	Solvent ontrolled Phase Transition of a Co ^{II} â€Organic Framework: From Achiral to Chiral and Two to Three Dimensions. Chemistry - A European Journal, 2017, 23, 7990-7996.	3.3	111
48	Effects of Multiple Platinum Species on Catalytic Reactivity Distinguished by Electron Microscopy and X-ray Absorption Spectroscopy Techniques. Journal of Physical Chemistry C, 2017, 121, 25805-25817.	3.1	19
49	Synthesis of a ceria-supported iron–ruthenium oxide catalyst and its structural transformation from subnanometer clusters to single atoms during the Fischer–Tropsch synthesis reaction. Inorganic Chemistry Frontiers, 2017, 4, 2059-2067.	6.0	11
50	Copper-ceria sheets catalysts: Effect of copper species on catalytic activity in CO oxidation reaction. Journal of Rare Earths, 2017, 35, 1186-1196.	4.8	38
51	Design of N-Coordinated Dual-Metal Sites: A Stable and Active Pt-Free Catalyst for Acidic Oxygen Reduction Reaction. Journal of the American Chemical Society, 2017, 139, 17281-17284.	13.7	1,220
52	Pt-embedded-CeO ₂ hollow spheres for enhancing CO oxidation performance. Materials Chemistry Frontiers, 2017, 1, 1754-1763.	5.9	36
53	Co‣iO ₂ Nanocomposite Catalysts for CO _{<i>x</i>} â€Free Hydrogen Production by Ammonia Decomposition. ChemPlusChem, 2017, 82, 368-375.	2.8	20
54	Gold-Iron Oxide Catalyst for CO Oxidation: Effect of Support Structure. Catalysts, 2016, 6, 37.	3.5	10

#	Article	IF	CITATIONS
55	Support effect of zinc tin oxide on gold catalyst for CO oxidation reaction. Chinese Journal of Catalysis, 2016, 37, 1702-1711.	14.0	1
56	Thermally Stable Hierarchical Nanostructures of Ultrathin MoS ₂ Nanosheet-Coated CeO ₂ Hollow Spheres as Catalyst for Ammonia Decomposition. Inorganic Chemistry, 2016, 55, 3992-3999.	4.0	52
5 7	Structural Determination of Catalytically Active Subnanometer Iron Oxide Clusters. ACS Catalysis, 2016, 6, 3072-3082.	11.2	33
58	An environmentally friendly and productive process for bioethanol production from potato waste. Biotechnology for Biofuels, 2016, 9, 50.	6.2	46
59	CO oxidation over Au/ZrLa-doped CeO 2 catalysts: Synergistic effect of zirconium and lanthanum. Chinese Journal of Catalysis, 2016, 37, 1331-1339.	14.0	8
60	Highly Tunable Selectivity for Syngasâ€Derived Alkenes over Zinc and Sodiumâ€Modulated Fe ₅ C ₂ Catalyst. Angewandte Chemie, 2016, 128, 10056-10061.	2.0	34
61	Highly Tunable Selectivity for Syngasâ€Derived Alkenes over Zinc and Sodiumâ€Modulated Fe ₅ C ₂ Catalyst. Angewandte Chemie - International Edition, 2016, 55, 9902-9907.	13.8	296
62	Contributions of distinct gold species to catalytic reactivity for carbon monoxide oxidation. Nature Communications, 2016, 7, 13481.	12.8	158
63	Iron-based composite nanostructure catalysts used to produce CO -free hydrogen from ammonia. Science Bulletin, 2016, 61, 220-226.	9.0	19
64	Effect of strongly bound copper species in copper–ceria catalyst for preferential oxidation of carbon monoxide. Applied Catalysis A: General, 2016, 518, 87-101.	4.3	44
65	Promoted Multimetal Oxide Catalysts for the Generation of Hydrogen via Ammonia Decomposition. Journal of Physical Chemistry C, 2016, 120, 7685-7696.	3.1	39
66	Effect of reduction–oxidation treatment on structure and catalytic properties of ordered mesoporous Cu–Mg–Al composite oxides. Science Bulletin, 2015, 60, 1108-1113.	9.0	8
67	Highly Dispersed Copper Oxide Clusters as Active Species in Copper-Ceria Catalyst for Preferential Oxidation of Carbon Monoxide. ACS Catalysis, 2015, 5, 2088-2099.	11.2	237
68	Uniform 2 nm gold nanoparticles supported on iron oxides as active catalysts for CO oxidation reaction: structure–activity relationship. Nanoscale, 2015, 7, 4920-4928.	5.6	47
69	<i>In Situ</i> X-ray Diffraction Study of Co–Al Nanocomposites as Catalysts for Ammonia Decomposition. Journal of Physical Chemistry C, 2015, 119, 17102-17110.	3.1	29
70	Transition metal nanoparticles dispersed in an alumina matrix as active and stable catalysts for CO _x -free hydrogen production from ammonia. Journal of Materials Chemistry A, 2015, 3, 17172-17180.	10.3	61
71	Enhanced Visible-Light Photocatalytic Activity of BiOI/BiOCl Heterojunctions: Key Role of Crystal Facet Combination. ACS Catalysis, 2015, 5, 3540-3551.	11.2	307
72	Exploring the effects of nanocrystal facet orientations in g-C ₃ N ₄ /BiOCl heterostructures on photocatalytic performance. Nanoscale, 2015, 7, 18971-18983.	5.6	139

#	Article	IF	CITATIONS
73	Highly Ordered Mesoporous Cobalt-Containing Oxides: Structure, Catalytic Properties, and Active Sites in Oxidation of Carbon Monoxide. Journal of the American Chemical Society, 2015, 137, 11407-11418.	13.7	225
74	Enhanced visible-light photocatalytic activity of g-C3N4/Zn2GeO4 heterojunctions with effective interfaces based on band match. Nanoscale, 2014, 6, 2649.	5.6	227
75	Ordered mesoporous Cu–Ce–O catalysts for CO preferential oxidation in H2-rich gases: Influence of copper content and pretreatment conditions. Applied Catalysis B: Environmental, 2014, 152-153, 11-18.	20.2	68
76	Facile fabrication of p-BiOI/n-Zn2SnO4 heterostructures with highly enhanced visible light photocatalytic performances. Materials Research Bulletin, 2014, 55, 196-204.	5.2	19
77	ZnWO4/BiOI heterostructures with highly efficient visible light photocatalytic activity: the case of interface lattice and energy level match. Journal of Materials Chemistry A, 2013, 1, 3421.	10.3	153
78	Co ₃ O ₄ –SiO ₂ Nanocomposite: A Very Active Catalyst for CO Oxidation with Unusual Catalytic Behavior. Journal of the American Chemical Society, 2011, 133, 11279-11288.	13.7	189
79	Monazite and Zircon Type LaVO ₄ :Eu Nanocrystals – Synthesis, Luminescent Properties, and Spectroscopic Identification of the Eu ³⁺ Sites. European Journal of Inorganic Chemistry, 2010, 2010, 2626-2635.	2.0	63
80	Highly Active Iron Oxide Supported Gold Catalysts for CO Oxidation: How Small Must the Gold Nanoparticles Be?. Angewandte Chemie - International Edition, 2010, 49, 5771-5775.	13.8	147
81	Very Low Temperature CO Oxidation over Colloidally Deposited Gold Nanoparticles on Mg(OH) ₂ and MgO. Journal of the American Chemical Society, 2010, 132, 1520-1522.	13.7	136
82	Large-Scale Synthesis of Single-Crystalline Iron Oxide Magnetic Nanorings. Journal of the American Chemical Society, 2008, 130, 16968-16977.	13.7	438
83	Iron Oxide Tube-in-Tube Nanostructures. Journal of Physical Chemistry C, 2007, 111, 13022-13027.	3.1	98
84	Single-Crystalline Iron Oxide Nanotubes. Angewandte Chemie - International Edition, 2005, 44, 4328-4333.	13.8	494
85	Selective Synthesis of Monazite- and Zircon-type LaVO4Nanocrystals. Journal of Physical Chemistry B, 2005, 109, 3284-3290.	2.6	139
86	Structural transformation induced improved luminescent properties for LaVO4:Eu nanocrystals. Applied Physics Letters, 2004, 84, 5305-5307.	3.3	142