Jai Rautela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4432586/publications.pdf

Version: 2024-02-01

686830 794141 1,718 20 13 19 citations h-index g-index papers 21 21 21 2702 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nature Immunology, $2017,18,1004$ - $1015.$	7.0	504
2	The cancer–natural killer cell immunity cycle. Nature Reviews Cancer, 2020, 20, 437-454.	12.8	308
3	CIS is a potent checkpoint in NK cell–mediated tumor immunity. Nature Immunology, 2016, 17, 816-824.	7.0	289
4	IL-15 signaling in NK cell cancer immunotherapy. Current Opinion in Immunology, 2017, 44, 1-6.	2.4	102
5	Mesenchymal stromal cell apoptosis is required for their therapeutic function. Nature Communications, 2021, 12, 6495.	5.8	91
6	Cell cycle progression dictates the requirement for BCL2 in natural killer cell survival. Journal of Experimental Medicine, 2017, 214, 491-510.	4.2	66
7	IMiDs prime myeloma cells for daratumumab-mediated cytotoxicity through loss of Ikaros and Aiolos. Blood, 2018, 132, 2166-2178.	0.6	65
8	Therapeutic blockade of activin-A improves NK cell function and antitumor immunity. Science Signaling, 2019, 12, .	1.6	64
9	NK cell–derived GM-CSF potentiates inflammatory arthritis and is negatively regulated by CIS. Journal of Experimental Medicine, 2020, 217, .	4.2	60
10	Harnessing Natural Killer Immunity in Metastatic SCLC. Journal of Thoracic Oncology, 2020, 15, 1507-1521.	0.5	50
11	Drug target validation in primary human natural killer cells using CRISPR RNP. Journal of Leukocyte Biology, 2020, 108, 1397-1408.	1.5	27
12	Molecular insight into targeting the NK cell immune response to cancer. Immunology and Cell Biology, 2018, 96, 477-484.	1.0	26
13	Therapeutic inhibition of the SRC-kinase HCK facilitates T cell tumor infiltration and improves response to immunotherapy. Science Advances, 2022, 8, .	4.7	16
14	Quantifying NK cell growth and survival changes in response to cytokines and regulatory checkpoint blockade helps identify optimal culture and expansion conditions. Journal of Leukocyte Biology, 2019, 105, 1341-1354.	1.5	11
15	Recipient BCL2 inhibition and NK cell ablation form part of a reduced intensity conditioning regime that improves allo-bone marrow transplantation outcomes. Cell Death and Differentiation, 2019, 26, 1516-1530.	5.0	10
16	miR17~92 restrains pro-apoptotic BIM to ensure survival of haematopoietic stem and progenitor cells. Cell Death and Differentiation, 2020, 27, 1475-1488.	5.0	9
17	BCL-XL antagonism selectively reduces neutrophil life span within inflamed tissues without causing neutropenia. Blood Advances, 2021, 5, 2550-2562.	2.5	9
18	Hhex Directly Represses BIM-Dependent Apoptosis to Promote NK Cell Development and Maintenance. Cell Reports, 2020, 33, 108285.	2.9	7

Jai Rautela

#	Article	IF	CITATIONS
19	Generation of novel Id2 and E2-2, E2A and HEB antibodies reveals novel Id2 binding partners and species-specific expression of E-proteins in NK cells. Molecular Immunology, 2019, 115, 56-63.	1.0	3
20	Loss-of-Function in SMAD4 Might Not Be Critical for Human Natural Killer Cell Responsiveness to TGF-Î ² . Frontiers in Immunology, 2019, 10, 904.	2.2	0