List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4431829/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metastable α-AgVO3 microrods as peroxidase mimetics for colorimetric determination of H2O2. Mikrochimica Acta, 2018, 185, 1.	5.0	386
2	Chemical etching preparation of the Bi2WO6/BiOI p–n heterojunction with enhanced photocatalytic antifouling activity under visible light irradiation. Chemical Engineering Journal, 2016, 288, 264-275.	12.7	217
3	Super-hydrophobic film prepared on zinc as corrosion barrier. Corrosion Science, 2011, 53, 2080-2086.	6.6	180
4	Green approach to fabrication of a super-hydrophobic film on copper and the consequent corrosion resistance. Corrosion Science, 2014, 80, 366-373.	6.6	167
5	Super-hydrophobic film fabricated on aluminium surface as a barrier to atmospheric corrosion in a marine environment. Corrosion Science, 2015, 91, 287-296.	6.6	135
6	Fabrication of Slippery Lubricant-Infused Porous Surface for Inhibition of Microbially Influenced Corrosion. ACS Applied Materials & amp; Interfaces, 2016, 8, 1120-1127.	8.0	133
7	Slippery liquid-infused porous surfaces fabricated on aluminum as a barrier to corrosion induced by sulfate reducing bacteria. Corrosion Science, 2015, 93, 159-166.	6.6	121
8	Advantage of super-hydrophobic surface as a barrier against atmospheric corrosion induced by salt deliquescence. Corrosion Science, 2015, 90, 23-32.	6.6	120
9	Controllable one-pot synthesis of a nest-like Bi ₂ WO ₆ /BiVO ₄ composite with enhanced photocatalytic antifouling performance under visible light irradiation. Dalton Transactions, 2016, 45, 4588-4602.	3.3	118
10	Super-hydrophobic metal-complex film fabricated electrochemically on copper as a barrier to corrosive medium. Corrosion Science, 2014, 83, 317-326.	6.6	115
11	Corrosion behavior of copper under biofilm of sulfate-reducing bacteria. Corrosion Science, 2014, 87, 407-415.	6.6	111
12	Liquid/solid contact mode of super-hydrophobic film in aqueous solution and its effect on corrosion resistance. Corrosion Science, 2012, 54, 77-84.	6.6	103
13	Effects of sulfate-reducing bacteria on the corrosion behavior of carbon steel. Electrochimica Acta, 2007, 52, 6084-6088.	5.2	99
14	Superhydrophobic-carbon fibre growth on a zinc surface for corrosion inhibition. Corrosion Science, 2013, 66, 350-359.	6.6	97
15	Super-hydrophobic film prepared on zinc and its effect on corrosion in simulated marine atmosphere. Corrosion Science, 2013, 69, 23-30.	6.6	86
16	BiOI/BiVO4 pâ¿¿n heterojunction with enhanced photocatalytic activity under visible-light irradiation. Journal of Industrial and Engineering Chemistry, 2016, 40, 83-92.	5.8	79
17	Fabrication of non-wetting surfaces on zinc surface as corrosion barrier. Corrosion Science, 2017, 128, 110-119.	6.6	71
18	Influence of sulphate-reducing bacteria on environmental parameters and marine corrosion behavior of Q235 steel in aerobic conditions. Electrochimica Acta, 2010, 55, 1528-1534.	5.2	70

#	Article	IF	CITATIONS
19	The influence of Desulfovibrio sp. and Pseudoalteromonas sp. on the corrosion of Q235 carbon steel in natural seawater. Corrosion Science, 2016, 112, 552-562.	6.6	69
20	A novel ion-exchange strategy for the fabrication of high strong BiOI/BiOBr heterostructure film coated metal wire mesh with tunable visible-light-driven photocatalytic reactivity. Journal of Hazardous Materials, 2018, 351, 11-19.	12.4	68
21	Bifunctionalized novel Co-V MMO nanowires: Intrinsic oxidase and peroxidase like catalytic activities for antibacterial application. Applied Catalysis B: Environmental, 2020, 261, 118256.	20.2	67
22	Controlled drug release characteristics and enhanced antibacterial effect of graphene oxide–drug intercalated layered double hydroxide hybrid films. Journal of Materials Chemistry, 2012, 22, 23106.	6.7	58
23	Facile synthesis of BiOI in hierarchical nanostructure preparation and its photocatalytic application to organic dye removal and biocidal effect of bacteria. Journal of Colloid and Interface Science, 2016, 481, 47-56.	9.4	57
24	Recent advances in chemical durability and mechanical stability of superhydrophobic materials: Multi-strategy design and strengthening. Journal of Materials Science and Technology, 2022, 129, 40-69.	10.7	55
25	Preparation of super-hydrophobic micro-needle CuO surface as a barrier against marine atmospheric corrosion. Corrosion Science, 2018, 131, 156-163.	6.6	48
26	Designing a Superhydrophobic Surface for Enhanced Atmospheric Corrosion Resistance Based on Coalescence-Induced Droplet Jumping Behavior. ACS Applied Materials & Interfaces, 2019, 11, 38276-38284.	8.0	47
27	Facile <i>in Situ</i> Growth of High Strong BiOl Network Films on Metal Wire Meshes with Photocatalytic Activity. ACS Sustainable Chemistry and Engineering, 2017, 5, 2454-2462.	6.7	45
28	An efficient way to prepare hydrophobic antireflective SiO2 film by sol–gel method. Materials Letters, 2016, 167, 69-72.	2.6	41
29	Design of slippery organogel layer with room-temperature self-healing property for marine anti-fouling application. Progress in Organic Coatings, 2019, 132, 132-138.	3.9	41
30	Atmospheric Corrosion Protection Performance and Mechanism of Superhydrophobic Surface Based on Coalescence-Induced Droplet Self-Jumping Behavior. ACS Applied Materials & 201; 11, 25438-25450.	8.0	40
31	An integrated multifunctional photoelectrochemical platform for simultaneous capture, detection, and inactivation of pathogenic bacteria. Sensors and Actuators B: Chemical, 2018, 274, 228-234.	7.8	35
32	Rational fabrication of superhydrophobic surfaces with coalescence-induced droplet jumping behavior for atmospheric corrosion protection. Chemical Engineering Journal, 2022, 428, 132029.	12.7	35
33	Layered double hydroxide derived ultrathin 2D Ni-V mixed metal oxide as a robust peroxidase mimic. Chemical Engineering Journal, 2019, 369, 161-169.	12.7	33
34	D-phenylalanine inhibits the corrosion of Q235 carbon steel caused by Desulfovibrio sp International Biodeterioration and Biodegradation, 2018, 127, 178-184.	3.9	29
35	Dual response mimetic enzyme of novel Co4S3/Co3O4 composite nanotube for antibacterial application. Journal of Hazardous Materials, 2020, 392, 122278.	12.4	27
36	Fabrication of a robust slippery liquid infused porous surface on Q235 carbon steel for inhibiting microbiologically influenced corrosion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127696.	4.7	27

#	Article	IF	CITATIONS
37	Facile fabrication of high-aspect-ratio super-hydrophobic surface with self-propelled droplet jumping behavior for atmospheric corrosion protection. Applied Surface Science, 2021, 555, 149549.	6.1	26
38	A self-powered microbiosensor system for specific bacteria detection based on triboelectric nanogenerator. Nano Energy, 2022, 98, 107317.	16.0	26
39	Comparison of water-line corrosion processes in natural and artificial seawater: The role of microbes. Electrochemistry Communications, 2017, 80, 9-15.	4.7	24
40	CoS ₂ /MoS ₂ Nanosheets with Enzymatic and Photocatalytic Properties for Bacterial Sterilization. ACS Applied Nano Materials, 2021, 4, 7698-7711.	5.0	24
41	Designing a transparent organogel layer with self-repairing property for the inhibition of marine biofouling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538, 140-147.	4.7	21
42	Smart anticorrosion coating based on stimuli-responsive micro/nanocontainer: a review. Journal of Oceanology and Limnology, 2020, 38, 1045-1063.	1.3	19
43	Intrinsic Oxidase-like Nanoenzyme Co ₄ S ₃ /Co(OH) ₂ Hybrid Nanotubes with Broad-Spectrum Antibacterial Activity. ACS Applied Materials & Interfaces, 2020, 12, 29614-29624.	8.0	18
44	Multifunctional and robust composite coating with water repellency and self-healing against marine corrosion. Journal of Industrial and Engineering Chemistry, 2022, 110, 529-541.	5.8	18
45	Corrosion of 907 Steel Influenced by Sulfate-Reducing Bacteria. Journal of Materials Engineering and Performance, 2019, 28, 1469-1479.	2.5	17
46	How surface orientation affects coalescence-induced droplet jumping behavior and subsequent atmospheric corrosion resistance of a superhydrophobic surface?. Corrosion Science, 2022, 197, 110082.	6.6	16
47	Synthesis of α-MnSe crystal as a robust peroxidase mimic. Materials Research Bulletin, 2015, 67, 152-157.	5.2	15
48	Exploring the bactericidal performance and application of novel mimic enzyme Co4S3. Journal of Colloid and Interface Science, 2020, 561, 327-337.	9.4	15
49	Sulfide ions-induced release of biocides from a metal-phenolic supramolecular film fabricated on aluminum for inhibition of microbially influenced corrosion. Corrosion Science, 2020, 167, 108534.	6.6	15
50	A robust and anti-UV layered textured superhydrophobic surface based on water-glass interface enhancement. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624, 126835.	4.7	15
51	Bifunctional nanozyme activities of layered double hydroxide derived Co-Al-Ce mixed metal oxides for antibacterial application. Journal of Oceanology and Limnology, 2020, 38, 1233-1245.	1.3	13
52	In situ growth of photocatalytic Ag-decorated β-Bi2O3/Bi2O2.7 heterostructure film on PVC polymer matrices with self-cleaning and antibacterial properties. Chemical Engineering Journal, 2022, 429, 131058.	12.7	13
53	Designing a Highly Stable Slippery Organogel on Q235 Carbon Steel for Inhibiting Microbiologically Influenced Corrosion. ACS Applied Bio Materials, 2021, 4, 6056-6064.	4.6	12
54	Selective ATP Detection via Activation of MoS ₂ -Based Artificial Nanozymes Inhibited by ZIF-90 Nanoparticles. ACS Applied Nano Materials, 2021, 4, 11545-11553.	5.0	12

#	Article	IF	CITATIONS
55	Synthesis and intrinsic enzyme-like activity of β-MnOOH nanoplates. Journal of the Taiwan Institute of Chemical Engineers, 2016, 59, 547-552.	5.3	11
56	Discriminative intracellular and extracellular ATP detection based on magnetically controlled antimicrobial peptide. Sensors and Actuators B: Chemical, 2021, 334, 129609.	7.8	11
57	Fabrication of polydimethylsiloxane-attached solid slippery surface with high underwater transparency towards the antifouling of optical window for marine instruments. Journal of Colloid and Interface Science, 2022, 623, 832-844.	9.4	8
58	Facile in situ growth of photoactive β-Bi 2 O 3 films. Journal of the Taiwan Institute of Chemical Engineers, 2017, 75, 183-188.	5.3	7
59	Dynamic self-propelling condensed microdroplets over super-hydrophobic surface: An exceptional atmospheric corrosion inhibition strategy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126055.	4.7	7
60	Sulfur-doping tuning oxygen vacancies in ultrathin 2D Ni–V mixed metal oxides for exceptional oxidase mimic and antibacterial applications. Journal of Materials Chemistry C, 2021, 9, 15445-15451.	5.5	7
61	Effects of metabolic activity of sulphateâ€reducing bacteria on heterogeneous corrosion behaviors of copper in seawater. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 985-997.	1.5	6
62	Design of dual-scale composite structured superhydrophobic surfaces for atmospheric corrosion prevention based on coalescence-induced droplet jumping. Journal of the Taiwan Institute of Chemical Engineers, 2022, 133, 104308.	5.3	6
63	Effect of autoinducer-2 on corrosion of Q235 carbon steel caused by sulfate reducing bacteria. Corrosion Science, 2022, 200, 110220.	6.6	6
64	Exogenous autoinducer-2 inhibits biofilm development of Desulfovibrio sp. Huiquan2017. World Journal of Microbiology and Biotechnology, 2021, 37, 124.	3.6	5
65	A novel strategy of hydrothermal in-situ grown bismuth based film on epoxy resin as recyclable photocatalyst for photodegrading antibiotics and sterilizing microorganism. Separation and Purification Technology, 2022, 290, 120842.	7.9	5
66	Label-free test kit for <scp>d</scp> -amino acid analysis by 1,4-benzenediboronic-acid-induced aggregation of gold nanoparticles. Analytical Methods, 2020, 12, 3404-3410.	2.7	4
67	Oxygen vacancy tuned oxidase mimic through selenium-doping ultrathin 2D Ni-V mixed metal oxide and antibacterial application. Journal of Alloys and Compounds, 2022, , 165446.	5.5	4
68	Corrosion of Q235 carbon steel influenced by the introduction of aerogenic and aerobic bacteria. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 1196-1204.	1.5	3
69	Strong acid resistance from electrochemical deposition of WO ₃ on superâ€hydrophobic CuOâ€coated copper surface. Materials and Corrosion - Werkstoffe Und Korrosion, 2018, 69, 978-984.	1.5	2
70	A high flexibility all-solid contact sulfide selective electrode using a graphene transducer. Analytical Methods, 2020, 12, 3151-3155.	2.7	1
71	Facile fabrication of highly sensitive and non-label aptasensors based on antifouling amyloid-like protein aggregates. Analytical Methods, 0, , .	2.7	1