Dil Thavarajah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4431533/publications.pdf Version: 2024-02-01

Οιι Τηλυλολιλι

#	Article	IF	CITATIONS
1	Falling into line: Adaptation of organically grown kale (Brassica oleracea var. acephala) and kale relatives to fall planting. Scientia Horticulturae, 2022, 295, 110878.	3.6	1
2	Organic dry pea (Pisum sativum L.) biofortification for better human health. PLoS ONE, 2022, 17, e0261109.	2.5	10
3	Pulse Crop Biofortification Toward Human Health, Targeting Prebiotic Carbohydrates, Protein, and Minerals. , 2022, , 205-224.		0
4	Protein Biofortification in Lentils (Lens culinaris Medik.) Toward Human Health. Frontiers in Plant Science, 2022, 13, 869713.	3.6	10
5	Effect of High Temperature Stress During the Reproductive Stage on Grain Yield and Nutritional Quality of Lentil (Lens culinaris Medikus). Frontiers in Nutrition, 2022, 9, 857469.	3.7	15
6	Fourierâ€ŧransform infrared spectroscopy (FTIR) as a highâ€ŧhroughput phenotyping tool for quantifying protein quality in pulse crops. The Plant Phenome Journal, 2022, 5, .	2.0	6
7	Genetic variation in the prebiotic carbohydrate and mineral composition of kale (Brassica oleracea L.) Tj ETQq1 1 96, 103718.	0.784314 3.9	rgBT /Overlo 6
8	Reaching the highest shelf: A review of organic production, nutritional quality, and shelf life of kale (Brassica oleracea var. acephala). Plants People Planet, 2021, 3, 308-318.	3.3	9
9	Molecular Mechanisms and Biochemical Pathways for Micronutrient Acquisition and Storage in Legumes to Support Biofortification for Nutritional Security. Frontiers in Plant Science, 2021, 12, 682842.	3.6	19
10	Genome-wide association mapping of lentil (Lens culinaris Medikus) prebiotic carbohydrates toward improved human health and crop stress tolerance. Scientific Reports, 2021, 11, 13926.	3.3	19
11	Genome-wide association studies of mineral and phytic acid concentrations in pea (<i>Pisum) Tj ETQq1 1 0.7843</i>	14 rgBT /0 1.8	Dvgrlock 10 T
12	Chickpea (Cicer arietinum L.) as a Source of Essential Fatty Acids – A Biofortification Approach. Frontiers in Plant Science, 2021, 12, 734980.	3.6	22
13	Heat and Drought Stress Impact on Phenology, Grain Yield, and Nutritional Quality of Lentil (Lens) Tj ETQq1 1 0.	784314 rg 3.7	BT_/Overlock 52
14	Field pea (Pisum sativum L.) shows genetic variation in phosphorus use efficiency in different P environments. Scientific Reports, 2020, 10, 18940.	3.3	12
15	Prebiotic carbohydrate concentrations of common bean and chickpea change during cooking, cooling, and reheating. Journal of Food Science, 2020, 85, 980-988.	3.1	10
16	Genotype and Environment Effects on Prebiotic Carbohydrate Concentrations in Kabuli Chickpea Cultivars and Breeding Lines Grown in the U.S. Pacific Northwest. Frontiers in Plant Science, 2020, 11, 112.	3.6	8
17	The roles and potential of lentil prebiotic carbohydrates in human and plant health. Plants People Planet, 2020, 2, 310-319.	3.3	32
18	Effect of cover crops on the yield and nutrient concentration of organic kale (Brassica oleracea L.) Tj ETQq0 0 0 r	gB <u>J</u> <u>/</u> Overl	ock 10 Tf 50

DIL THAVARAJAH

#	Article	IF	CITATIONS
19	Variability in Prebiotic Carbohydrates in Different Market Classes of Chickpea, Common Bean, and Lentil Collected From the American Local Market. Frontiers in Nutrition, 2019, 6, 38.	3.7	23
20	Pulses, Global Health, and Sustainability: Future Trends. , 2019, , 1-17.		2
21	Checking Agriculture's Pulse: Field Pea (Pisum Sativum L.), Sustainability, and Phosphorus Use Efficiency. Frontiers in Plant Science, 2019, 10, 1489.	3.6	35
22	The impact of processing and cooking on prebiotic carbohydrates in lentil. Journal of Food Composition and Analysis, 2018, 70, 72-77.	3.9	21
23	Dietary Reference Intake and Nutritional Yield of Lentils in the Northern Great Plains. Crop Science, 2018, 58, 1342-1348.	1.8	6
24	Analysis of genetic variability and genotype × environment interactions for iron and zinc content among diverse genotypes of lentil. Journal of Food Science and Technology, 2018, 55, 3592-3605.	2.8	27
25	Lentil (<i>Lens culinaris</i> Medikus) Diet Affects the Gut Microbiome and Obesity Markers in Rat. Journal of Agricultural and Food Chemistry, 2018, 66, 8805-8813.	5.2	25
26	Prebiotic carbohydrate profile and in vivo prebiotic effect of pumpkin (Cucurbita maxima) grown in Sri Lanka. Journal of the National Science Foundation of Sri Lanka, 2018, 46, 477.	0.2	1
27	Can lentil (Lens culinaris Medikus) reduce the risk of obesity?. Journal of Functional Foods, 2017, 38, 706-715.	3.4	17
28	Moisture deficit effects on kale (Brassica oleracea L. var. acephala) biomass, mineral, and low molecular weight carbohydrate concentrations. Scientia Horticulturae, 2017, 226, 216-222.	3.6	24
29	Will selenium fertilization improve biological nitrogen fixation in lentils?. Journal of Plant Nutrition, 2017, 40, 2392-2401.	1.9	7
30	Selecting Lentil Accessions for Global Selenium Biofortification. Plants, 2017, 6, 34.	3.5	20
31	Carbohydrate Concentration in Lentils (Lens culinarisMedikus.): Genotypic and Environmental Effects. Communications in Soil Science and Plant Analysis, 2017, 48, 2447-2454.	1.4	1
32	Genetic diversity among cultivated and wild lentils for iron, zinc, copper, calcium and magnesium concentrations. Australian Journal of Crop Science, 2016, 10, 1381-1387.	0.3	29
33	Development of a panel of unigene-derived polymorphic EST–SSR markers in lentil using public database information. Crop Journal, 2016, 4, 425-433.	5.2	10
34	Mineral micronutrient and prebiotic carbohydrate profiles of USA-grown kale (Brassica oleracea L.) Tj ETQq0 0 0	rgBT/Ove	erlock 10 Tf 50
35	Lentil and Kale: Complementary Nutrient-Rich Whole Food Sources to Combat Micronutrient and Calorie Malnutrition. Nutrients, 2015, 7, 9285-9298.	4.1	52

Will selenium increase lentil (Lens culinaris Medik) yield and seed quality?. Frontiers in Plant Science, 3.6 53 2015, 6, 356.

DIL THAVARAJAH

#	Article	IF	CITATIONS
37	Enhancing selenium concentration in lentil (<i>Lens culinaris</i> subsp. <i>culinaris</i>) through foliar application. Journal of Agricultural Science, 2015, 153, 656-665.	1.3	20
38	Phenotyping Nutritional and Antinutritional Traits. , 2015, , 223-233.		6
39	Selenium fertilization on lentil (Lens culinaris Medikus) grain yield, seed selenium concentration, and antioxidant activity. Field Crops Research, 2015, 177, 9-14.	5.1	69
40	A global survey of low-molecular weight carbohydrates in lentils. Journal of Food Composition and Analysis, 2015, 44, 178-185.	3.9	20
41	Rice, Wheat and Maize Biofortification. Sustainable Agriculture Reviews, 2015, , 123-140.	1.1	3
42	Mineral and phenolic concentrations of mungbean [Vigna radiata (L.) R. Wilczek var. radiata] grown in semi-arid tropical India. Journal of Food Composition and Analysis, 2015, 39, 23-32.	3.9	52
43	Processing, cooking, and cooling affect prebiotic concentrations in lentil (Lens culinaris Medikus). Journal of Food Composition and Analysis, 2015, 38, 106-111.	3.9	33
44	Genetic and environmental variation of seed iron and food matrix factors of North-Dakota-grown field peas (Pisum sativum L.). Journal of Food Composition and Analysis, 2015, 37, 67-74.	3.9	14
45	Surface properties of semi-synthetic enteric coating films: Opportunities to develop bio-based enteric coating films for colon-targeted delivery. Bioactive Carbohydrates and Dietary Fibre, 2014, 4, 139-143.	2.7	1
46	Novel starch based nano scale enteric coatings from soybean meal for colon-specific delivery. Carbohydrate Polymers, 2014, 111, 273-279.	10.2	34
47	Enzyme resistant carbohydrate based micro-scale materials from sugar beet (Beta vulgaris L.) pulp for food and pharmaceutical applications. Bioactive Carbohydrates and Dietary Fibre, 2014, 3, 115-121.	2.7	4
48	Mineral Micronutrient Content of Cultivars of Field Pea, Chickpea, Common Bean, and Lentil Grown in Saskatchewan, Canada. Crop Science, 2014, 54, 1698-1708.	1.8	117
49	Pulses Biofortification in Genomic Era: Multidisciplinary Opportunities and Challenges. , 2014, , 207-220.		12
50	Inaccuracies in Phytic Acid Measurement: Implications for Mineral Biofortification and Bioavailability. American Journal of Plant Sciences, 2014, 05, 29-34.	0.8	6
51	Phenolic Compound Profiles of Two Common Beans Consumed by Rwandans. American Journal of Plant Sciences, 2014, 05, 2943-2947.	0.8	5
52	Biofortification of mungbean (<i>Vigna radiata</i>) as a whole food to enhance human health. Journal of the Science of Food and Agriculture, 2013, 93, 1805-1813.	3.5	168
53	Lentil (Lens culinaris L.) as a candidate crop for iron biofortification: Is there genetic potential for iron bioavailability?. Field Crops Research, 2013, 144, 119-125.	5.1	40
54	Lentil (Lens culinaris L.): A prebiotic-rich whole food legume. Food Research International, 2013, 51, 107-113.	6.2	108

Dil Thavarajah

#	Article	IF	CITATIONS
55	Selenium biofortification in lentil (Lens culinaris Medikus subsp. culinaris): Farmers' field survey and genotype×environment effect. Food Research International, 2013, 54, 1596-1604.	6.2	34
56	The influence of phenolic and phytic acid food matrix factors on iron bioavailability potential in 10 commercial lentil genotypes (Lens culinaris L.). Journal of Food Composition and Analysis, 2013, 31, 82-86.	3.9	23
57	Lentils (Lens culinaris L.), a Rich Source of Folates. Journal of Agricultural and Food Chemistry, 2013, 61, 7794-7799.	5.2	66
58	Detailed Composition Analyses of Diverse Oat Genotype Kernels Grown in Different Environments in North Dakota. Cereal Chemistry, 2013, 90, 572-578.	2.2	24
59	Lentils (Lens culinaris L.) as a Source of Dietary Selenium. , 2013, , 255-264.		3
60	Changes in Inositol Phosphates in Low Phytic Acid Field Pea (<i>Pisum) Tj ETQq0 0 0 rgBT /Overloc Journal of Plant Sciences, 2013, 04, 251-256.</i>	ck 10 Tf 50 0.8	0 547 Td (sat 5
61	Evaluation of chickpea (Cicer arietinum L.) micronutrient composition: Biofortification opportunities to combat global micronutrient malnutrition. Food Research International, 2012, 49, 99-104.	6.2	87
62	Detection of Common Vetch (Vicia sativa L.) in Lentil (Lens culinaris L.) using unique chemical fingerprint markers. Food Chemistry, 2012, 135, 2203-2206.	8.2	7
63	Iron-, zinc-, and magnesium-rich field peas (Pisum sativum L.) with naturally low phytic acid: A potential food-based solution to global micronutrient malnutrition. Journal of Food Composition and Analysis, 2012, 27, 8-13.	3.9	81
64	The Soil Microbial Community and Grain Micronutrient Concentration of Historical and Modern Hard Red Spring Wheat Cultivars Grown Organically and Conventionally in the Black Soil Zone of the Canadian Prairies. Sustainability, 2011, 3, 500-517.	3.2	15
65	The potential of lentil (Lens culinaris L.) as a whole food for increased selenium, iron, and zinc intake: preliminary results from a 3Âyear study. Euphytica, 2011, 180, 123-128.	1.2	99
66	Phytic acid and mineral micronutrients in field-grown chickpea (Cicer arietinum L) cultivars from western Canada. European Food Research and Technology, 2011, 233, 203-212.	3.3	25
67	A global survey of effects of genotype and environment on selenium concentration in lentils (Lens) Tj ETQq1 1 0.7	784314 rg 8.2	gBT_/Overlock
68	Phytic acid and Fe and Zn concentration in lentil (Lens culinaris L.) seeds is influenced by temperature during seed filling period. Food Chemistry, 2010, 122, 254-259.	8.2	48
69	Natural enrichment of selenium in Saskatchewan field peas (Pisum sativum L.) Canadian Journal of Plant Science, 2010, 90, 383-389.	0.9	24
70	Lentils (Lens culinaris Medikus Subspecies culinaris): A Whole Food for Increased Iron and Zinc Intake. Journal of Agricultural and Food Chemistry, 2009, 57, 5413-5419.	5.2	129
71	Low Phytic Acid Lentils (Lens culinaris L.): A Potential Solution for Increased Micronutrient Bioavailability. Journal of Agricultural and Food Chemistry, 2009, 57, 9044-9049.	5.2	97
72	Effect of fertilizer nitrogen management and phosphorus placement on canola production under varied conditions in Saskatchewan. Canadian Journal of Plant Science, 2009, 89, 29-48.	0.9	15

DIL THAVARAJAH

#	Article	IF	CITATIONS
73	High Potential for Selenium Biofortification of Lentils (Lens culinaris L.). Journal of Agricultural and Food Chemistry, 2008, 56, 10747-10753.	5.2	109
74	Chemical Form of Selenium in Naturally Selenium-Rich Lentils (Lens culinarisL.) from Saskatchewan. Journal of Agricultural and Food Chemistry, 2007, 55, 7337-7341.	5.2	64
75	Drought-induced changes in free amino acid and ureide concentrations of nitrogen-fixing chickpea. Canadian Journal of Plant Science, 2006, 86, 149-156.	0.9	8
76	Nitrogen Fixation, Amino Acid, and Ureide Associations in Chickpea. Crop Science, 2005, 45, 2497-2502.	1.8	9
77	Early Supplies of Available Nitrogen to Seedâ€Row of a Canola Crop as Affected by Fertilizer Placement. Journal of Plant Nutrition, 2003, 26, 683-690.	1.9	4
78	Lentil (Lens culinaris Medikus): A Whole Food Rich in Prebiotic Carbohydrates to Combat Global Obesity. , 0, , .		2