Juan J Rios

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4431290/publications.pdf

Version: 2024-02-01

		201575	206029
51	2,422 citations	27	48
papers	citations	h-index	g-index
52	52	52	2999
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Science, 2010, 178, 30-40.	1.7	318
2	Oxidative Stress and Antioxidants in Tomato (Solanum lycopersicum) Plants Subjected to Boron Toxicity. Annals of Botany, 2007, 100, 747-756.	1.4	217
3	Silicon-mediated Improvement in Plant Salinity Tolerance: The Role of Aquaporins. Frontiers in Plant Science, 2017, 8, 948.	1.7	132
4	lodine biofortification and antioxidant capacity of lettuce: potential benefits for cultivation and human health. Annals of Applied Biology, 2008, 152, 289-299.	1.3	120
5	Biofortification of Se and induction of the antioxidant capacity in lettuce plants. Scientia Horticulturae, 2008, 116, 248-255.	1.7	111
6	The effect of environmental conditions on nutritional quality of cherry tomato fruits: evaluation of two experimental Mediterranean greenhouses. Journal of the Science of Food and Agriculture, 2011, 91, 152-162.	1.7	93
7	Production and detoxification of H ₂ O ₂ in lettuce plants exposed to selenium. Annals of Applied Biology, 2009, 154, 107-116.	1.3	91
8	High Resolution Melt (HRM) analysis is an efficient tool to genotype EMS mutants in complex crop genomes. Plant Methods, 2011, 7, 43.	1.9	79
9	Beneficial effects of exogenous iodine in lettuce plants subjected to salinity stress. Plant Science, 2011, 181, 195-202.	1.7	65
10	Flavins secreted by roots of ironâ€deficient <i>Beta vulgaris</i> enable mining of ferric oxide via reductive mechanisms. New Phytologist, 2016, 209, 733-745.	3.5	64
11	Study of the ionome and uptake fluxes in cherry tomato plants under moderate water stress conditions. Plant and Soil, 2010, 335, 339-347.	1.8	63
12	Response of nitrogen metabolism to boron toxicity in tomato plants. Plant Biology, 2009, 11, 671-677.	1.8	61
13	Ammonia production and assimilation: Its importance as a tolerance mechanism during moderate water deficit in tomato plants. Journal of Plant Physiology, 2011, 168, 816-823.	1.6	60
14	Effect of cytokinins on oxidative stress in tobacco plants under nitrogen deficiency. Environmental and Experimental Botany, 2011, 72, 167-173.	2.0	58
15	Response of nitrogen metabolism in lettuce plants subjected to different doses and forms of selenium. Journal of the Science of Food and Agriculture, 2010, 90, 1914-1919.	1.7	57
16	Involvement of lignification and membrane permeability in the tomato root response to boron toxicity. Plant Science, 2009, 176, 545-552.	1.7	55
17	Parameters Symptomatic for Boron Toxicity in Leaves of Tomato Plants. Journal of Botany, 2012, 2012, 1-17.	1.2	52
18	Does Iodine Biofortification Affect Oxidative Metabolism in Lettuce Plants?. Biological Trace Element Research, 2011, 142, 831-842.	1.9	51

#	Article	IF	Citations
19	Photorespiration Process and Nitrogen Metabolism in Lettuce Plants (Lactuca sativa L.): Induced Changes in Response to Iodine Biofortification. Journal of Plant Growth Regulation, 2010, 29, 477-486.	2.8	44
20	Distribution of calcium (Ca) and magnesium (Mg) in the leaves of Brassica rapa under varying exogenous Ca and Mg supply. Annals of Botany, 2012, 109, 1081-1089.	1.4	43
21	Genetical and Comparative Genomics of <i>Brassica</i> under Altered Ca Supply Identifies <i>Arabidopsis</i> Ca-Transporter Orthologs Â. Plant Cell, 2014, 26, 2818-2830.	3.1	40
22	Effects of individual and combined metal foliar fertilisers on iron- and manganese-deficient Solanum lycopersicum plants. Plant and Soil, 2016, 402, 27-45.	1.8	37
23	Interrelations of nutrient and water transporters in plants under abiotic stress. Physiologia Plantarum, 2021, 171, 595-619.	2.6	37
24	Nitrogen-Use Efficiency in Relation to Different Forms and Application Rates of Se in Lettuce Plants. Journal of Plant Growth Regulation, 2010, 29, 164-170.	2.8	34
25	Comparative effect of elicitors on the physiology and secondary metabolites in broccoli plants. Journal of Plant Physiology, 2019, 239, 1-9.	1.6	34
26	Regulation of sulphur assimilation in lettuce plants in the presence of selenium. Plant Growth Regulation, 2008, 56, 43-51.	1.8	32
27	Using Perls Staining to Trace the Iron Uptake Pathway in Leaves of a Prunus Rootstock Treated with Iron Foliar Fertilizers. Frontiers in Plant Science, 2016, 7, 893.	1.7	30
28	STUDY OF THE INTERACTIONS BETWEEN IODINE AND MINERAL NUTRIENTS IN LETTUCE PLANTS. Journal of Plant Nutrition, 2012, 35, 1958-1969.	0.9	28
29	NUTRITIONAL BALANCE CHANGES IN LETTUCE PLANT GROWN UNDER DIFFERENT DOSES AND FORMS OF SELENIUM. Journal of Plant Nutrition, 2013, 36, 1344-1354.	0.9	27
30	Photosynthesis and metabolism of sugars from lettuce plants (Lactuca sativa L. var. longifolia) subjected to biofortification with iodine. Plant Growth Regulation, 2011, 65, 137-143.	1.8	25
31	Cytokinin-Dependent Improvement in Transgenic P _{SARK} ::IPT Tobacco under Nitrogen Deficiency. Journal of Agricultural and Food Chemistry, 2011, 59, 10491-10495.	2.4	24
32	Changes induced by zinc toxicity in the 2-DE protein profile of sugar beet roots. Journal of Proteomics, 2013, 94, 149-161.	1.2	22
33	Grafting between tobacco plants to enhance salinity tolerance. Journal of Plant Physiology, 2006, 163, 1229-1237.	1.6	21
34	Environmental conditions in relation to stress in cherry tomato fruits in two experimental Mediterranean greenhouses. Journal of the Science of Food and Agriculture, 2009, 89, 735-742.	1.7	21
35	Ammonium formation and assimilation in PSARKâ^·IPT tobacco transgenic plants under low N. Journal of Plant Physiology, 2012, 169, 157-162.	1.6	21
36	The use of biovesicles to improve the efficiency of Zn foliar fertilization. Colloids and Surfaces B: Biointerfaces, 2019, 173, 899-905.	2.5	20

#	Article	IF	CITATIONS
37	Nanobiofertilization as a novel technology for highly efficient foliar application of Fe and B in almond trees. Royal Society Open Science, 2020, 7, 200905.	1.1	17
38	Effects of Fe deficiency on the protein profile of <i>Brassica napus</i> phloem sap. Proteomics, 2015, 15, 3835-3853.	1.3	15
39	Proline metabolism in cherry tomato exocarp in relation to temperature and solar radiation. Journal of Horticultural Science and Biotechnology, 2007, 82, 739-744.	0.9	14
40	Environmental conditions affect pectin solubilization in cherry tomato fruits grown in two experimental Mediterranean greenhouses. Environmental and Experimental Botany, 2009, 67, 320-327.	2.0	13
41	Growing broccoli under salinity: the influence of cultivar and season on glucosinolates content. Scientia Agricola, 2020, 77, .	0.6	13
42	The Expanding Role of Vesicles Containing Aquaporins. Cells, 2018, 7, 179.	1.8	11
43	Foliar Application of Zn Alleviates Salt Stress Symptoms of Pak Choi Plants by Activating Water Relations and Glucosinolate Synthesis. Agronomy, 2020, 10, 1528.	1.3	10
44	Assaying the use of sodium thiosulphate as a biostimulant and its effect on cadmium accumulation and tolerance in Brassica oleracea plants. Ecotoxicology and Environmental Safety, 2020, 200, 110760.	2.9	9
45	Effect of CAX1a TILLING mutations on photosynthesis performance in salt-stressed Brassica rapa plants. Plant Science, 2021, 311, 111013.	1.7	8
46	lodine application affects nitrogen-use efficiency of lettuce plants (Lactuca satival.). Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2011, 61, 378-383.	0.3	7
47	Influence of foliar Methyl-jasmonate biostimulation on exudation of glucosinolates and their effect on root pathogens of broccoli plants under salinity condition. Scientia Horticulturae, 2021, 282, 110027.	1.7	6
48	Foliar Application of Boron Nanoencapsulated in Almond Trees Allows B Movement Within Tree and Implements Water Uptake and Transport Involving Aquaporins. Frontiers in Plant Science, 2021, 12, 752648.	1.7	5
49	Nanoencapsulated Boron Foliar Supply Increased Expression of NIPs Aquaporins and BOR Transporters of In Vitro Ipomoea batatas Plants. Applied Sciences (Switzerland), 2022, 12, 1788.	1.3	2
50	Analysis of RAZORMIN® as a Biostimulant and Its Effect on the Phytotoxicity Mitigation Caused by Fungicide Azoxystrobin in Pepper. Agronomy, 2022, 12, 1418.	1.3	2
51	Physicochemical Characterization and Effect of Additives of Membrane Vesicles from Brassica oleracea L. to Be Used in Nanofertilization. , 2021, 11, .		0