
## Pascale Romby

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4431005/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The 3′UTRâ€derived sRNA RsaG coordinates redox homeostasis and metabolism adaptation in response to glucoseâ€6â€phosphate uptake in <i>Staphylococcus aureus</i> . Molecular Microbiology, 2022, 117, 193-214.        | 1.2 | 15        |
| 2  | RNA Modifications in Pathogenic Bacteria: Impact on Host Adaptation and Virulence. Genes, 2021, 12, 1125.                                                                                                             | 1.0 | 16        |
| 3  | Stabilization of Ribosomal RNA of the Small Subunit by Spermidine in Staphylococcus aureus.<br>Frontiers in Molecular Biosciences, 2021, 8, 738752.                                                                   | 1.6 | 7         |
| 4  | The power of cooperation: Experimental and computational approaches in the functional characterization of bacterial sRNAs. Molecular Microbiology, 2020, 113, 603-612.                                                | 1.2 | 27        |
| 5  | Mapping post-transcriptional modifications in Staphylococcus aureus tRNAs by nanoLC/MSMS.<br>Biochimie, 2019, 164, 60-69.                                                                                             | 1.3 | 19        |
| 6  | RsaC sRNA modulates the oxidative stress response of Staphylococcus aureus during manganese starvation. Nucleic Acids Research, 2019, 47, 9871-9887.                                                                  | 6.5 | 71        |
| 7  | A multifaceted small <scp>RNA</scp> modulates gene expression upon glucose limitation in<br><i>Staphylococcus aureus</i> . EMBO Journal, 2019, 38, .                                                                  | 3.5 | 44        |
| 8  | The RNA targetome of Staphylococcus aureus non-coding RNA RsaA: impact on cell surface properties and defense mechanisms. Nucleic Acids Research, 2017, 45, 6746-6760.                                                | 6.5 | 41        |
| 9  | Complete Genome Sequence and Annotation of the Staphylococcus aureus Strain HG001. Genome<br>Announcements, 2017, 5, .                                                                                                | 0.8 | 17        |
| 10 | sRNA-mediated activation of gene expression by inhibition of 5'-3' exonucleolytic mRNA degradation.<br>ELife, 2017, 6, .                                                                                              | 2.8 | 43        |
| 11 | Two novel members of the LhrC family of small RNAs in <i>Listeria monocytogenes</i> with overlapping regulatory functions but distinctive expression profiles. RNA Biology, 2016, 13, 895-915.                        | 1.5 | 36        |
| 12 | <i>Staphylococcus aureus</i> RNAIII and Its Regulon Link Quorum Sensing, Stress Responses,<br>Metabolic Adaptation, and Regulation of Virulence Gene Expression. Annual Review of Microbiology,<br>2016, 70, 299-316. | 2.9 | 153       |
| 13 | Traditional Chemical Mapping of RNA Structure In Vitro and In Vivo. Methods in Molecular Biology, 2016, 1490, 83-103.                                                                                                 | 0.4 | 1         |
| 14 | Structure of the 70S ribosome from human pathogen <i>Staphylococcus aureus</i> . Nucleic Acids<br>Research, 2016, 44, gkw933.                                                                                         | 6.5 | 39        |
| 15 | Various checkpoints prevent the synthesis ofStaphylococcus aureuspeptidoglycan hydrolase LytM in the stationary growth phase. RNA Biology, 2016, 13, 427-440.                                                         | 1.5 | 8         |
| 16 | Small RNAs in Bacteria and Archaea. Advances in Genetics, 2015, 90, 133-208.                                                                                                                                          | 0.8 | 462       |
| 17 | A Nitric Oxide Regulated Small RNA Controls Expression of Genes Involved in Redox Homeostasis in<br>Bacillus subtilis. PLoS Genetics, 2015, 11, e1004957.                                                             | 1.5 | 73        |
| 18 | sRNA and mRNA turnover in Gram-positive bacteria. FEMS Microbiology Reviews, 2015, 39, 316-330.                                                                                                                       | 3.9 | 79        |

| #  | Article                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A defense-offense multi-layered regulatory switch in a pathogenic bacterium. Nucleic Acids Research, 2015, 43, 1357-1369.                                                         | 6.5 | 22        |
| 20 | A glimpse at long regulatory RNAs in various organisms. Biochimie, 2015, 117, 1-2.                                                                                                | 1.3 | 0         |
| 21 | A method to map changes in bacterial surface composition induced by regulatory RNAs in Escherichia coli and Staphylococcus aureus. Biochimie, 2014, 106, 175-179.                 | 1.3 | 8         |
| 22 | A Non-Coding RNA Promotes Bacterial Persistence and Decreases Virulence by Regulating a Regulator<br>in Staphylococcus aureus. PLoS Pathogens, 2014, 10, e1003979.                | 2.1 | 110       |
| 23 | A PNPase Dependent CRISPR System in Listeria. PLoS Genetics, 2014, 10, e1004065.                                                                                                  | 1.5 | 76        |
| 24 | The importance of regulatory RNAs in Staphylococcus aureus. Infection, Genetics and Evolution, 2014, 21, 616-626.                                                                 | 1.0 | 41        |
| 25 | Novel aspects of RNA regulation in <i>Staphylococcus aureus</i> . FEBS Letters, 2014, 588, 2523-2529.                                                                             | 1.3 | 49        |
| 26 | In vivo mapping of RNA–RNA interactions in Staphylococcus aureus using the endoribonuclease III.<br>Methods, 2013, 63, 135-143.                                                   | 1.9 | 18        |
| 27 | Escherichia coli Ribosomal Protein S1 Unfolds Structured mRNAs Onto the Ribosome for Active Translation Initiation. PLoS Biology, 2013, 11, e1001731.                             | 2.6 | 151       |
| 28 | RNA-Mediated Regulation in Pathogenic Bacteria. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a010298-a010298.                                                            | 2.9 | 157       |
| 29 | Base Pairing Interaction between 5â€2- and 3â€2-UTRs Controls icaR mRNA Translation in Staphylococcus<br>aureus. PLoS Genetics, 2013, 9, e1004001.                                | 1.5 | 123       |
| 30 | Global Regulatory Functions of the Staphylococcus aureus Endoribonuclease III in Gene Expression.<br>PLoS Genetics, 2012, 8, e1002782.                                            | 1.5 | 128       |
| 31 | Loop-loop interactions involved in antisense regulation are processed by the endoribonuclease III in <i>Staphylococcus aureus</i> . RNA Biology, 2012, 9, 1461-1472.              | 1.5 | 22        |
| 32 | Current knowledge on regulatory RNAs and their machineries in <i>Staphylococcus aureus</i> . RNA<br>Biology, 2012, 9, 402-413.                                                    | 1.5 | 47        |
| 33 | When Ribonucleases Come into Play in Pathogens: A Survey of Gram-Positive Bacteria. International<br>Journal of Microbiology, 2012, 2012, 1-18.                                   | 0.9 | 21        |
| 34 | The Expression of Small Regulatory RNAs in Clinical Samples Reflects the Different Life Styles of Staphylococcus aureus in Colonization vs. Infection. PLoS ONE, 2012, 7, e37294. | 1.1 | 32        |
| 35 | A Current Overview of Regulatory RNAs in Staphylococcus Aureus. , 2012, , 51-75.                                                                                                  |     | 3         |
| 36 | The Staphylococcus aureus RNome and Its Commitment to Virulence. PLoS Pathogens, 2011, 7, e1002006.                                                                               | 2.1 | 123       |

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | An overview of RNAs with regulatory functions in gram-positive bacteria. Cellular and Molecular Life<br>Sciences, 2010, 67, 217-237.                                                                              | 2.4  | 93        |
| 38 | RNA-mediated regulation in bacteria: from natural to artificial systems. New Biotechnology, 2010, 27, 222-235.                                                                                                    | 2.4  | 35        |
| 39 | Cartography of Methicillin-Resistant S. aureus Transcripts: Detection, Orientation and Temporal Expression during Growth Phase and Stress Conditions. PLoS ONE, 2010, 5, e10725.                                  | 1.1  | 119       |
| 40 | Staphylococcus aureus RNAIII Binds to Two Distant Regions of coa mRNA to Arrest Translation and Promote mRNA Degradation. PLoS Pathogens, 2010, 6, e1000809.                                                      | 2.1  | 108       |
| 41 | The cspA mRNA Is a Thermosensor that Modulates Translation of the Cold-Shock Protein CspA.<br>Molecular Cell, 2010, 37, 21-33.                                                                                    | 4.5  | 212       |
| 42 | The Crc global regulator binds to an unpaired A-rich motif at the Pseudomonas putida alkS mRNA coding sequence and inhibits translation initiation. Nucleic Acids Research, 2009, 37, 7678-7690.                  | 6.5  | 90        |
| 43 | A search for small noncoding RNAs in Staphylococcus aureus reveals a conserved sequence motif for regulation. Nucleic Acids Research, 2009, 37, 7239-7257.                                                        | 6.5  | 200       |
| 44 | The role of mRNA structure in translational control in bacteria. RNA Biology, 2009, 6, 153-160.                                                                                                                   | 1.5  | 63        |
| 45 | Ribosomal Initiation Complexes Probed by Toeprinting and Effect of trans-Acting Translational<br>Regulators in Bacteria. Methods in Molecular Biology, 2009, 540, 247-263.                                        | 0.4  | 35        |
| 46 | Probing mRNA Structure and sRNA–mRNA Interactions in Bacteria Using Enzymes and Lead(II). Methods<br>in Molecular Biology, 2009, 540, 215-232.                                                                    | 0.4  | 24        |
| 47 | RNA switches regulate initiation of translation in bacteria. Biological Chemistry, 2008, 389, 585-598.                                                                                                            | 1.2  | 22        |
| 48 | Chapter 16 Staphylococcus aureus Endoribonuclease III. Methods in Enzymology, 2008, 447, 309-327.                                                                                                                 | 0.4  | 22        |
| 49 | Mutations in Residues Involved in Zinc Binding in the Catalytic Site of <i>Escherichia coli</i><br>Threonyl-tRNA Synthetase Confer a Dominant Lethal Phenotype. Journal of Bacteriology, 2007, 189,<br>6839-6848. | 1.0  | 5         |
| 50 | Structured mRNAs Regulate Translation Initiation by Binding to the Platform of the Ribosome. Cell, 2007, 130, 1019-1031.                                                                                          | 13.5 | 129       |
| 51 | Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes and Development, 2007, 21, 1353-1366.                 | 2.7  | 411       |
| 52 | The role of RNAs in the regulation of virulence-gene expression. Current Opinion in Microbiology, 2006, 9, 229-236.                                                                                               | 2.3  | 174       |
| 53 | Translational Operator of mRNA on the Ribosome: How Repressor Proteins Exclude Ribosome Binding.<br>Science, 2005, 308, 120-123.                                                                                  | 6.0  | 99        |
| 54 | Staphylococcus aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression.<br>EMBO Journal, 2005, 24, 824-835.                                                                          | 3.5  | 308       |

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Bacterial translational control at atomic resolution. Trends in Genetics, 2003, 19, 155-161.                                                                                                                                                     | 2.9  | 76        |
| 56 | The modular structure of Escherichia coli threonyl-tRNA synthetase as both an enzyme and a regulator of gene expression. Molecular Microbiology, 2003, 47, 961-974.                                                                              | 1.2  | 30        |
| 57 | High affinity nucleic acid aptamers for streptavidin incorporated into bi-specific capture ligands.<br>Nucleic Acids Research, 2002, 30, 45e-45.                                                                                                 | 6.5  | 56        |
| 58 | Lead(II) as a probe for investigating RNA structure in vivo. Rna, 2002, 8, 534-541.                                                                                                                                                              | 1.6  | 70        |
| 59 | 12 Antisense RNAs in bacteria and their genetic elements. Advances in Genetics, 2002, 46, 361-398.                                                                                                                                               | 0.8  | 213       |
| 60 | RNA loop–loop interactions as dynamic functional motifs. Biochimie, 2002, 84, 925-944.                                                                                                                                                           | 1.3  | 129       |
| 61 | Structural basis of translational control by Escherichia coli threonyl tRNA synthetase. Nature<br>Structural Biology, 2002, 9, 343-7.                                                                                                            | 9.7  | 56        |
| 62 | Four-way Junctions in Antisense RNA-mRNA Complexes Involved in Plasmid Replication Control: A<br>Common Theme?. Journal of Molecular Biology, 2001, 309, 605-614.                                                                                | 2.0  | 33        |
| 63 | An unusual structure formed by antisense-target RNA binding involves an extended kissing complex with a four-way junction and a side-by-side helical alignment. Rna, 2000, 6, 311-324.                                                           | 1.6  | 66        |
| 64 | Probing the structure of RNAIII, the Staphylococcus aureus agr regulatory RNA, and identification of the RNA domain involved in repression of protein A expression. Rna, 2000, 6, 668-679.                                                       | 1.6  | 152       |
| 65 | Transfer RNA–Mediated Editing in Threonyl-tRNA Synthetase. Cell, 2000, 103, 877-884.                                                                                                                                                             | 13.5 | 175       |
| 66 | [1] Probing RNA structure and RNA-ligand complexes with chemical probes. Methods in Enzymology, 2000, 318, 3-21.                                                                                                                                 | 0.4  | 122       |
| 67 | Zinc ion mediated amino acid discrimination by threonyl-tRNA synthetase. Nature Structural Biology, 2000, 7, 461-465.                                                                                                                            | 9.7  | 139       |
| 68 | The Drosophila Modifier of Variegationmodulo Gene Product Binds Specific RNA Sequences at the<br>Nucleolus and Interacts with DNA and Chromatin in a Phosphorylation-dependent Manner. Journal of<br>Biological Chemistry, 1999, 274, 6315-6323. | 1.6  | 36        |
| 69 | The Structure of Threonyl-tRNA Synthetase-tRNAThr Complex Enlightens Its Repressor Activity and Reveals an Essential Zinc Ion in the Active Site. Cell, 1999, 97, 371-381.                                                                       | 13.5 | 291       |
| 70 | TheEscherichia colithreonyl-tRNA synthetase gene contains a split ribosomal binding site interrupted<br>by a hairpin structure that is essential for autoregulation. Molecular Microbiology, 1998, 29,<br>1077-1090.                             | 1.2  | 41        |
| 71 | Antisense RNA Control of Plasmid R1 Replication. Journal of Biological Chemistry, 1997, 272, 12508-12512.                                                                                                                                        | 1.6  | 69        |
| 72 | Implications of RNA Structure on the Annealing of a Potent Antisense RNA Directed against the Human<br>Immunodeficiency Virus Type 1. Biochemistry, 1997, 36, 12711-12721.                                                                       | 1.2  | 29        |

| #  | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A Novel Approach to Introduce Site-Directed Specific Cross-Links Within RNA-Protein Complexes.<br>Application to the Escherichia Coli Threonyl-tRNA Synthetase/Translational Operator Complex. FEBS<br>Journal, 1995, 231, 726-735.                                         | 0.2 | 20        |
| 74 | Replication control of plasmid R1: disruption of an inhibitory RNA structure that sequesters the repA<br>ribosome-binding site permits tap-independent RepA synthesis. Molecular Microbiology, 1994, 12, 49-60.                                                             | 1.2 | 41        |
| 75 | Molecular mimicry in translational control ofE.colithreonyl-tRNA synthetase gene. Competitive<br>inhibition in tRNA aminoacylation and operator-repressor recognition switch using tRNA identity<br>rules. Nucleic Acids Research, 1992, 20, 5633-5640.                     | 6.5 | 41        |
| 76 | Three-dimensional model of Escherichia coli ribosomal 5 S RNA as deduced from structure probing in solution and computer modeling. Journal of Molecular Biology, 1991, 221, 293-308.                                                                                        | 2.0 | 96        |
| 77 | Structural studies on site-directed mutants of domain 3 of Xenopus laevis oocyte 5 S ribosomal RNA.<br>Journal of Molecular Biology, 1991, 219, 243-255.                                                                                                                    | 2.0 | 22        |
| 78 | Involvement of "hinge―nucleotides of Xenopus laevis 5 S rRNA in the RNA structural organization and in the binding of transcription factor TFIIIA. Journal of Molecular Biology, 1991, 218, 69-81.                                                                          | 2.0 | 41        |
| 79 | Solution confomation of several free tRNALeuspecies from bean, yeast andEscherichia coliand<br>interaction of these tRNAs with bean cytoplasmic Leucyl-tRNA synthetase. A phosphate alkylation<br>study with ethylnitrosourea. Nucleic Acids Research, 1990, 18, 2589-2597. | 6.5 | 29        |
| 80 | Effect of mutations in domain 2 on the structural organization of oocyte 5 S rRNA from Xenopus<br>laevis. Journal of Molecular Biology, 1990, 215, 103-111.                                                                                                                 | 2.0 | 25        |
| 81 | Escherichia coli threonyl-tRNA synthetase and tRNAThr modulate the binding of the ribosome to the translational initiation site of the ThrS mRNA. Journal of Molecular Biology, 1990, 216, 299-310.                                                                         | 2.0 | 84        |
| 82 | The conformation of the initiator tRNA and of the 16S rRNA from Escherichia coli during the<br>formation of the 30S initiation complex. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms,<br>1990, 1050, 84-92.                                                     | 2.4 | 7         |
| 83 | The translational regulation of threonyl-tRNA synthetase. Functional relationship between the enzyme, the cognate tRNA and the ribosome. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1990, 1050, 343-350.                                                     | 2.4 | 10        |
| 84 | Binding of initiation factor 2 and initiator tRNA to the Escherichia coli 30S ribosomal subunit induces allosteric transitions in 16S rRNA. Biochemistry, 1990, 29, 8144-8151.                                                                                              | 1.2 | 18        |
| 85 | Use of Lead(II) to Probe the Structure of Large RNA's. Conformation of the 3′ Terminal Domain ofE.<br>coli16S rRNA and its Involvement in Building the tRNA Binding Sites. Journal of Biomolecular<br>Structure and Dynamics, 1989, 6, 971-984.                             | 2.0 | 94        |
| 86 | Computer modeling from solution data of spinach chloroplast and of Xenopus laevis somatic and oocyte 5 S rRNAs. Journal of Molecular Biology, 1989, 207, 417-431.                                                                                                           | 2.0 | 144       |
| 87 | Probing the phosphates of the Escherichia coli ribosomal 16S RNA in its naked form, in the 30S subunit, and in the 70S ribosome. Biochemistry, 1989, 28, 5847-5855.                                                                                                         | 1.2 | 32        |
| 88 | Characterization and footprint analysis of two 5S rRNA binding proteins from spinach chloroplast<br>ribosomes. Biochemistry, 1989, 28, 5840-5846.                                                                                                                           | 1.2 | 15        |
| 89 | Crosslinking of transcription factor TFIIIA to ribosomal 5S RNA<br>fromX.laevisbytrans-diamminedichloroplatinum (II). Nucleic Acids Research, 1989, 17, 10035-10046.                                                                                                        | 6.5 | 20        |
| 90 | Translational control in E. coli: The case of threonyl-tRNA synthetase. Bioscience Reports, 1988, 8,<br>619-632.                                                                                                                                                            | 1.1 | 13        |

| #   | Article                                                                                                                                                                                                              | lF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Higher order structure of chloroplastic 5S ribosomal RNA from spinach. Biochemistry, 1988, 27, 4721-4730.                                                                                                            | 1.2 | 56        |
| 92  | Secondary structure of the Escherichia coli translational operator of threonyl-tRNA synthetase and relationship to its function. Gene, 1988, 72, 187-188.                                                            | 1.0 | 1         |
| 93  | A comparison of the solution structures and conformational properties of the somatic and oocyte 5S rRNAs ofXenopus laevis. Nucleic Acids Research, 1988, 16, 2295-2312.                                              | 6.5 | 55        |
| 94  | Translational Control in E.Coli: The Case of Threonyl-tRNA Synthetase. , 1988, , 463-478.                                                                                                                            |     | 1         |
| 95  | Importance of Conserved Residues for the Conformation of the T-Loop in tRNAs. Journal of Biomolecular Structure and Dynamics, 1987, 5, 669-687.                                                                      | 2.0 | 60        |
| 96  | Higher-order structure of domain III in Escherichia coli 16S ribosomal RNA, 30S subunit and 70S ribosome. Biochimie, 1987, 69, 1081-1096.                                                                            | 1.3 | 50        |
| 97  | Comparison of the tertiary structure of yeast tRNAAsp and tRNAPhe in solution. Journal of Molecular<br>Biology, 1987, 195, 193-204.                                                                                  | 2.0 | 83        |
| 98  | Probing the structure of RNAs in solution. Nucleic Acids Research, 1987, 15, 9109-9128.                                                                                                                              | 6.5 | 751       |
| 99  | Binding of Escherichia coli ribosomal protein S8 to 16 S rRNA. Journal of Molecular Biology, 1987, 198,<br>91-107.                                                                                                   | 2.0 | 99        |
| 100 | Studies on Anticodon-anticodon Interactions: Hemi-protonation of Cytosines Induces Self-pairing<br>Through the GCC Anticodon ofE. ColitRNA-Gly. Journal of Biomolecular Structure and Dynamics, 1986,<br>4, 193-203. | 2.0 | 18        |
| 101 | Correlation Between Crystal and Solution Structures in tRNA. Yeast tRNAPhe and tRNAAsp the Models for Free and Messenger RNA Bound tRNAs. , 1986, , 125-136.                                                         |     | 1         |
| 102 | Yeast tRNAAsp tertiary structure in solution and areas of interaction of the tRNA with aspartyl-tRNA synthetase. Journal of Molecular Biology, 1985, 184, 455-471.                                                   | 2.0 | 129       |
| 103 | Anticodon-anticodon interactions in solution. Journal of Molecular Biology, 1985, 184, 107-118.                                                                                                                      | 2.0 | 28        |
| 104 | Interactions between avian myeloblastosis reverse transcriptase and tRNATrp. Mapping of complexed tRNA with chemicals and nucleases. Nucleic Acids Research, 1984, 12, 2259-2271.                                    | 6.5 | 31        |
| 105 | Tertiary structure of animal tRNATrp in solution and interaction of tRNATrp with tryptophanyl-tRNA synthetase. FEBS Journal, 1984, 138, 67-75.                                                                       | 0.2 | 36        |
| 106 | Interaction of tRNAPhe and tRNAVal with Aminoacyl-tRNA Synthetases. A Chemical Modication Study.<br>FEBS Journal, 1983, 132, 537-544.                                                                                | 0.2 | 35        |
| 107 | Yeast tRNAAsp-Aspartyl-tRNA Synthetase: The Crystalline Complex. Journal of Biomolecular Structure and Dynamics, 1983, 1, 209-223.                                                                                   | 2.0 | 26        |
| 108 | Probing RNA Structures with Enzymes and ChemicalsIn Vitro andIn Vivo. , 0, , 151-171.                                                                                                                                |     | 14        |

| #   | Article                                                                               | IF | CITATIONS |
|-----|---------------------------------------------------------------------------------------|----|-----------|
| 109 | Modulatory Role of Modified Nucleotides in RNA Loop-Loop Interaction. , 0, , 113-133. |    | 13        |