Taoda Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4430899/publications.pdf

Version: 2024-02-01

	687363	839539
475	13	18
citations	h-index	g-index
1.0	10	F.C.4
18	18	564
docs citations	times ranked	citing authors
	citations 18	475 13 citations h-index 18 18

#	Article	IF	CITATIONS
1	Diversityâ€Oriented Threeâ€Component Reactions of Diazo Compounds with Anilines and 4â€Oxoâ€Enoates. Angewandte Chemie - International Edition, 2013, 52, 9289-9292.	13.8	71
2	Pd(ii)-catalyzed formal [4+1] cycloaddition reactions of diazoacetates and aryl propargyl alcohols to form 2,5-dihydrofurans. Chemical Communications, 2015, 51, 15204-15207.	4.1	55
3	Ruthenium(II)/Chiral Brønsted Acid Coâ€Catalyzed Enantioselective Fourâ€Component Reaction/Cascade Azaâ€Michael Addition for Efficient Construction of 1,3,4â€Tetrasubstituted Tetrahydroisoquinolines. Chemistry - A European Journal, 2014, 20, 1505-1509.	3.3	43
4	An epigenetic modifier induces production of $(10 \hat{a} \in S)$ -verruculide B, an inhibitor of protein tyrosine phosphatases by Phoma sp. nov. LG0217, a fungal endophyte of Parkinsonia microphylla. Bioorganic and Medicinal Chemistry, 2017, 25, 1860-1866.	3.0	37
5	CuSO4-catalyzed three-component reaction of $\hat{l}\pm$ -diazo ester, water and isatin: an efficient approach to oxindole derivatives. Green Chemistry, 2013, 15, 620.	9.0	35
6	Dual Catalysis in Highly Enantioselective Multicomponent Reaction with Water: An Efficient Approach to Chiral βâ€Aminoâ€Î±â€Hydroxy Acid Derivatives. ChemCatChem, 2011, 3, 653-656.	3.7	31
7	Synthesis of spiro[2,3-dihydrofuran-3,3′-oxindole] derivatives <i>via</i> a multi-component cascade reaction of α-diazo esters, water, isatins and malononitrile/ethyl cyanoacetate. Green Chemistry, 2019, 21, 4936-4940.	9.0	28
8	Component match in rhodium catalyzed three-component reactions of ethyl diazoacetate, H2O and aryl imines: a highly diastereoselective one-step synthesis of \hat{l}^2 -aryl isoserine derivatives. Organic and Biomolecular Chemistry, 2009, 7, 5028.	2.8	27
9	BrÃ, nsted Acid Catalyzed Enantioselective Assembly of Spirochroman-3,3-oxindoles. Organic Letters, 2020, 22, 2925-2930.	4.6	27
10	Rhodium(II)â€Catalyzed Formal [4+1]â€Cycloaddition of Pyridotriazoles and Propargyl Alcohols: Synthesis of 2,5â€Dihydrofurans. Advanced Synthesis and Catalysis, 2019, 361, 1265-1270.	4.3	22
11	Enantioselective Intermolecular Mannich-Type Interception of Phenolic Oxonium Ylide for the Direct Assembly of Chiral 2,2-Disubstituted Dihydrobenzofurans. ACS Catalysis, 2021, 11, 6750-6756.	11.2	21
12	Selective inhibition of p97 by chlorinated analogues of dehydrocurvularin. Organic and Biomolecular Chemistry, 2016, 14, 5918-5921.	2.8	17
13	A high throughput substrate binding assay reveals hexachlorophene as an inhibitor of the ER-resident HSP70 chaperone GRP78. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1689-1693.	2.2	14
14	Catalytic asymmetric synthesis of 2,5-dihydrofurans using synergistic bifunctional Ag catalysis. Organic and Biomolecular Chemistry, 2019, 17, 8737-8744.	2.8	13
15	Discovery of an eIF4A Inhibitor with a Novel Mechanism of Action. Journal of Medicinal Chemistry, 2021, 64, 15727-15746.	6.4	6
16	An asymmetric catalytic multi-component reaction enabled the green synthesis of isoserine derivatives and semi-synthesis of paclitaxel. Green Synthesis and Catalysis, 2023, 4, 58-63.	6.8	6
17	A sustainable catalytic enantioselective synthesis of norstatine derivatives. Organic and Biomolecular Chemistry, 2019, 17, 9792-9798.	2.8	4