
Mark S Sundrud

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4430263/publications.pdf Version: 2024-02-01

ΜΑΦΚ S SUNDOUD

#	Article	IF	CITATIONS
1	Genetic and pharmacological inhibition of the nuclear receptor RORα regulates TH17 driven inflammatory disorders. Nature Communications, 2021, 12, 76.	12.8	27
2	CAR directs T cell adaptation to bile acids in the small intestine. Nature, 2021, 593, 147-151.	27.8	36
3	Physiological expression and function of the MDR1 transporter in cytotoxic T lymphocytes. Journal of Experimental Medicine, 2020, 217, .	8.5	27
4	Artificial microbiome heterogeneity spurs six practical action themes and examples to increase study power-driven reproducibility. Scientific Reports, 2020, 10, 5039.	3.3	37
5	Aminoacyl-tRNA synthetase inhibition activates a pathway that branches from the canonical amino acid response in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8900-8911.	7.1	24
6	Regulation of Intestinal Inflammation by Dietary Fats. Frontiers in Immunology, 2020, 11, 604989.	4.8	36
7	What's old is new again: Batf transcription factors and Th9 cells. Mucosal Immunology, 2019, 12, 583-585.	6.0	2
8	Emerging roles of bile acids in mucosal immunity and inflammation. Mucosal Immunology, 2019, 12, 851-861.	6.0	192
9	Role of Dysregulated Cytokine Signaling and Bacterial Triggers in the Pathogenesis ofÂCutaneous T-Cell Lymphoma. Journal of Investigative Dermatology, 2018, 138, 1116-1125.	0.7	68
10	Xenobiotic and endobiotic handling by the mucosal immune system. Current Opinion in Gastroenterology, 2018, 34, 404-412.	2.3	6
11	The Xenobiotic Transporter Mdr1 Enforces T Cell Homeostasis in the Presence of Intestinal Bile Acids. Immunity, 2017, 47, 1182-1196.e10.	14.3	73
12	Cytokine Networks and T-Cell Subsets in Inflammatory Bowel Diseases. Inflammatory Bowel Diseases, 2016, 22, 1157-1167.	1.9	118
13	Informatics-Based Discovery of Disease-Associated Immune Profiles. PLoS ONE, 2016, 11, e0163305.	2.5	2
14	<i>In vivo</i> regulation of gene expression and T helper type 17 differentiation by <scp>ROR</scp> <i>i³</i> t inverse agonists. Immunology, 2015, 145, 347-356.	4.4	16
15	Akt Inhibition Enhances Expansion of Potent Tumor-Specific Lymphocytes with Memory Cell Characteristics. Cancer Research, 2015, 75, 296-305.	0.9	283
16	SerpinB1 regulates homeostatic expansion of IL-17+ γδ and CD4+ Th17 cells. Journal of Leukocyte Biology, 2014, 95, 521-530.	3.3	27
17	Drug-resistant Th17 cells: culprits in steroidâ€refractory Crohn's disease?. Immunotherapy, 2014, 6, 503-506.	2.0	0
18	Halofuginone-Induced Amino Acid Starvation Regulates Stat3-Dependent Th17 Effector Function and Reduces Established Autoimmune Inflammation. Journal of Immunology, 2014, 192, 2167-2176.	0.8	26

Mark S Sundrud

#	Article	IF	CITATIONS
19	Pro-inflammatory human Th17 cells selectively express P-glycoprotein and are refractory to glucocorticoids. Journal of Experimental Medicine, 2014, 211, 89-104.	8.5	392
20	Targeting Th17 cells in autoimmune diseases. Trends in Pharmacological Sciences, 2014, 35, 493-500.	8.7	287
21	Pharmacologic Inhibition of RORγt Regulates Th17 Signature Gene Expression and Suppresses Cutaneous Inflammation In Vivo. Journal of Immunology, 2014, 192, 2564-2575.	0.8	127
22	Small-Molecule RORÎ ³ t Antagonists Inhibit T Helper 17 Cell Transcriptional Network by Divergent Mechanisms. Immunity, 2014, 40, 477-489.	14.3	253
23	Identity crisis of Th17 cells: Many forms, many functions, many questions. Seminars in Immunology, 2013, 25, 263-272.	5.6	68
24	T Cell–Derived IL-17 Mediates Epithelial Changes in the Airway and Drives Pulmonary Neutrophilia. Journal of Immunology, 2013, 191, 3100-3111.	0.8	83
25	Correction: T cell–derived IL-17 mediates epithelial changes in the airway and drives pulmonary neutrophilia. Journal of Immunology, 2013, 191, 5318-5318.	0.8	3
26	Halofuginone and other febrifugine derivatives inhibit prolyl-tRNA synthetase. Nature Chemical Biology, 2012, 8, 311-317.	8.0	301
27	Cytokine signals through PI-3 kinase pathway modulate Th17 cytokine production by CCR6+ human memory T cells. Journal of Experimental Medicine, 2011, 208, 1875-1887.	8.5	88
28	Targeting Th17 and Treg Signaling Pathways in Autoimmunity. Annual Reports in Medicinal Chemistry, 2011, 46, 155-170.	0.9	1
29	Synergistic and combinatorial control of T cell activation and differentiation by transcription factors. Current Opinion in Immunology, 2010, 22, 286-292.	5.5	28
30	Hyperactivation of nuclear factor of activated T cells 1 (NFAT1) in T cells attenuates severity of murine autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15169-15174.	7.1	35
31	Halofuginone Inhibits T _H 17 Cell Differentiation by Activating the Amino Acid Starvation Response. Science, 2009, 324, 1334-1338.	12.6	361
32	Domain Requirements and Sequence Specificity of DNA Binding for the Forkhead Transcription Factor FOXP3. PLoS ONE, 2009, 4, e8109.	2.5	54
33	Hyperactivable NFAT1 Ameliorates Autoimmune Encephalitis In Vivo Blood, 2009, 114, 711-711.	1.4	0
34	Regulation of T Helper 17 Differentiation by Orphan Nuclear Receptors: It's Not Just RORγt Anymore. Immunity, 2008, 28, 5-7.	14.3	15
35	Orphans against Autoimmunity. Immunity, 2008, 29, 167-168.	14.3	0
36	<i>Helicobacter pylori</i> Vacuolating Cytotoxin Inhibits Activation-Induced Proliferation of Human T and B Lymphocyte Subsets. Journal of Immunology, 2007, 179, 5433-5440.	0.8	101

MARK S SUNDRUD

#	Article	IF	CITATIONS
37	New twists of T cell fate: control of T cell activation and tolerance by TGF-β and NFAT. Current Opinion in Immunology, 2007, 19, 287-293.	5.5	33
38	Regulatory Tâ€cell gene expression: ChIP'ing away at Foxp3. Immunology and Cell Biology, 2007, 85, 177-178.	2.3	1
39	Human Natural Killer T Cells Are Heterogeneous in Their Capacity to Reprogram Their Effector Functions. PLoS ONE, 2006, 1, e50.	2.5	40
40	Helicobacter pylori VacA Toxin Inhibits Human Immunodeficiency Virus Infection of Primary Human T Cells. Journal of Virology, 2006, 80, 11767-11775.	3.4	20
41	Transcription factor GATA-1 potently represses the expression of the HIV-1 coreceptor CCR5 in human T cells and dendritic cells. Blood, 2005, 106, 3440-3448.	1.4	23
42	Inhibition of primary human T cell proliferation by <i>Helicobacter pylori</i> vacuolating toxin (VacA) is independent of VacA effects on IL-2 secretion. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7727-7732.	7.1	232
43	Genetic Reprogramming of Primary Human T Cells Reveals Functional Plasticity in Th Cell Differentiation. Journal of Immunology, 2003, 171, 3542-3549.	0.8	107