André Kleinridders

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4430061/publications.pdf Version: 2024-02-01

ANDRÃO KLEINDIDDERS

#	Article	IF	CITATIONS
1	Obesity Hinders the Protective Effect of Selenite Supplementation on Insulin Signaling. Antioxidants, 2022, 11, 862.	2.2	8
2	Central Acting Hsp10 Regulates Mitochondrial Function, Fatty Acid Metabolism, and Insulin Sensitivity in the Hypothalamus. Antioxidants, 2021, 10, 711.	2.2	6
3	Hemicentin-1 is an essential extracellular matrix component of the dermal–epidermal and myotendinous junctions. Scientific Reports, 2021, 11, 17926.	1.6	24
4	Orexin receptors 1 and 2 in serotonergic neurons differentially regulate peripheral glucose metabolism in obesity. Nature Communications, 2021, 12, 5249.	5.8	17
5	HSP60 reduction protects against diet-induced obesity by modulating energy metabolism in adipose tissue. Molecular Metabolism, 2021, 53, 101276.	3.0	14
6	Untangling the effect of insulin action on brain mitochondria and metabolism. Journal of Neuroendocrinology, 2021, 33, e12932.	1.2	27
7	Insulin Receptor. , 2021, , 1-8.		Ο
8	Insulin Receptor. , 2021, , 831-838.		0
9	Cell autonomous requirement of neurofibromin (Nf1) for postnatal muscle hypertrophic growth and metabolic homeostasis. Journal of Cachexia, Sarcopenia and Muscle, 2020, 11, 1758-1778.	2.9	8
10	Interplay of Dietary Fatty Acids and Cholesterol Impacts Brain Mitochondria and Insulin Action. Nutrients, 2020, 12, 1518.	1.7	11
11	Low steady-state oxidative stress inhibits adipogenesis by altering mitochondrial dynamics and decreasing cellular respiration. Redox Biology, 2020, 32, 101507.	3.9	17
12	Central nervous pathways of insulin action in the control of metabolism and food intake. Lancet Diabetes and Endocrinology,the, 2020, 8, 524-534.	5.5	126
13	GPx3 dysregulation impacts adipose tissue insulin receptor expression and sensitivity. JCl Insight, 2020, 5, .	2.3	29
14	1654-P: Deletion of the Mammalian Indy Homolog (Slc13a5) Improves Hepatic Insulin Sensitivity through Vagal Nerve Signaling. Diabetes, 2020, 69, 1654-P.	0.3	0
15	Reduced Oxidative Stress and Enhanced FGF21 Formation in Livers of Endurance-Exercised Rats with Diet-Induced NASH. Nutrients, 2019, 11, 2709.	1.7	15
16	Trimethylamine N-Oxide Binds and Activates PERK to Promote Metabolic Dysfunction. Cell Metabolism, 2019, 30, 1141-1151.e5.	7.2	215
17	Insulin action in the brain regulates mitochondrial stress responses and reduces diet-induced weight gain. Molecular Metabolism, 2019, 21, 68-81.	3.0	41
18	Impact of Brain Insulin Signaling on Dopamine Function, Food Intake, Reward, and Emotional Behavior. Current Nutrition Reports, 2019, 8, 83-91.	2.1	53

André Kleinridders

#	Article	IF	CITATIONS
19	Molecular effects of dietary fatty acids on brain insulin action and mitochondrial function. Biological Chemistry, 2019, 400, 991-1003.	1.2	13
20	Regional differences in brain glucose metabolism determined by imaging mass spectrometry. Molecular Metabolism, 2018, 12, 113-121.	3.0	40
21	Editorial: Crosstalk of Mitochondria With Brain Insulin and Leptin Signaling. Frontiers in Endocrinology, 2018, 9, 761.	1.5	8
22	Soybean Oil-Derived Poly-Unsaturated Fatty Acids Enhance Liver Damage in NAFLD Induced by Dietary Cholesterol. Nutrients, 2018, 10, 1326.	1.7	29
23	Mitochondrial Chaperones in the Brain: Safeguarding Brain Health and Metabolism?. Frontiers in Endocrinology, 2018, 9, 196.	1.5	43
24	Insulin regulates astrocyte gliotransmission and modulates behavior. Journal of Clinical Investigation, 2018, 128, 2914-2926.	3.9	138
25	Domain-dependent effects of insulin and IGF-1 receptors on signalling and gene expression. Nature Communications, 2017, 8, 14892.	5.8	111
26	Differential Roles of Insulin and IGF-1 Receptors in Adipose Tissue Development and Function. Diabetes, 2016, 65, 2201-2213.	0.3	114
27	Myeloid-Cell-Derived VEGF Maintains Brain Glucose Uptake and Limits Cognitive Impairment in Obesity. Cell, 2016, 165, 882-895.	13.5	167
28	Insulin and IGF-1 receptors regulate FoxO-mediated signaling in muscle proteostasis. Journal of Clinical Investigation, 2016, 126, 3433-3446.	3.9	132
29	Differential effects of angiopoietin-like 4 in brain and muscle on regulation of lipoprotein lipase activity. Molecular Metabolism, 2015, 4, 144-150.	3.0	26
30	Insulin resistance in brain alters dopamine turnover and causes behavioral disorders. Proceedings of the United States of America, 2015, 112, 3463-3468.	3.3	314
31	Excessive Cellular Proliferation Negatively Impacts Reprogramming Efficiency of Human Fibroblasts. Stem Cells Translational Medicine, 2015, 4, 1101-1108.	1.6	11
32	ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown adipocytes. Science Translational Medicine, 2014, 6, 247ra103.	5.8	169
33	Insulin and insulin-like growth factor 1 receptors are required for normal expression of imprinted genes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14512-14517.	3.3	43
34	Insulin Receptor Signaling in Normal and Insulin-Resistant States. Cold Spring Harbor Perspectives in Biology, 2014, 6, a009191-a009191.	2.3	1,058
35	Insulin Action in Brain Regulates Systemic Metabolism and Brain Function. Diabetes, 2014, 63, 2232-2243.	0.3	472
36	Sirt3 Regulates Metabolic Flexibility of Skeletal Muscle Through Reversible Enzymatic Deacetylation. Diabetes, 2013, 62, 3404-3417.	0.3	234

André Kleinridders

#	Article	IF	CITATIONS
37	Leptin regulation of Hsp60 impacts hypothalamic insulin signaling. Journal of Clinical Investigation, 2013, 123, 4667-4680.	3.9	101
38	Role for Insulin Signaling in Catecholaminergic Neurons in Control of Energy Homeostasis. Cell Metabolism, 2011, 13, 720-728.	7.2	156
39	Deficiency of the splicing factor Sfrs10 results in early embryonic lethality in mice and has no impact on full-length SMN/Smn splicing. Human Molecular Genetics, 2010, 19, 2154-2167.	1.4	53
40	Hepatic Bax Inhibitor-1 Inhibits IRE1α and Protects from Obesity-associated Insulin Resistance and Glucose Intolerance. Journal of Biological Chemistry, 2010, 285, 6198-6207.	1.6	98
41	VKORC1 deficiency in mice causes early postnatal lethality due to severe bleeding. Thrombosis and Haemostasis, 2009, 101, 1044-1050.	1.8	58
42	Enhanced Stat3 Activation in POMC Neurons Provokes Negative Feedback Inhibition of Leptin and InsulinSignaling in Obesity. Journal of Neuroscience, 2009, 29, 11582-11593.	1.7	153
43	PLRG1 Is an Essential Regulator of Cell Proliferation and Apoptosis during Vertebrate Development and Tissue Homeostasis. Molecular and Cellular Biology, 2009, 29, 3173-3185.	1.1	49
44	Riboflavin kinase couples TNF receptor 1 to NADPH oxidase. Nature, 2009, 460, 1159-1163.	13.7	197
45	CNS-targets in control of energy and glucose homeostasis. Current Opinion in Pharmacology, 2009, 9, 794-804.	1.7	49
46	Secondary Consequences of \hat{l}^2 Cell Inexcitability: Identification and Prevention in a Murine Model of KATP-Induced Neonatal Diabetes Mellitus. Cell Metabolism, 2009, 9, 140-151.	7.2	92
47	MyD88 Signaling in the CNS Is Required for Development of Fatty Acid-Induced Leptin Resistance and Diet-Induced Obesity. Cell Metabolism, 2009, 10, 249-259.	7.2	428
48	Reversible gene knockdown in mice using a tight, inducible shRNA expression system. Nucleic Acids Research, 2007, 35, e54.	6.5	105