Jagabar Sathik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4429698/publications.pdf Version: 2024-02-01

IACABAD SATHIK

#	Article	lF	CITATIONS
1	An assessment on performance of DC–DC converters for renewable energy applications. Renewable and Sustainable Energy Reviews, 2016, 58, 1475-1485.	8.2	134
2	Compact Switched Capacitor Multilevel Inverter (CSCMLI) With Self-Voltage Balancing and Boosting Ability. IEEE Transactions on Power Electronics, 2019, 34, 4009-4013.	5.4	131
3	A New Switched Capacitor 7L Inverter With Triple Voltage Gain and Low Voltage Stress. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 1294-1298.	2.2	106
4	A Self-Balancing Five-Level Boosting Inverter With Reduced Components. IEEE Transactions on Power Electronics, 2019, 34, 6020-6024.	5.4	100
5	Switched-Capacitor-Based Quadruple-Boost Nine-Level Inverter. IEEE Transactions on Power Electronics, 2019, 34, 7147-7150.	5.4	96
6	A New Single Phase Single Switched-Capacitor Based Nine-Level Boost Inverter Topology With Reduced Switch Count and Voltage Stress. IEEE Access, 2019, 7, 174178-174188.	2.6	90
7	An assessment of recent multilevel inverter topologies with reduced power electronics components for renewable applications. Renewable and Sustainable Energy Reviews, 2018, 82, 3379-3399.	8.2	89
8	Internet of Things based real-time electric vehicle load forecasting and charging station recommendation. ISA Transactions, 2020, 97, 431-447.	3.1	79
9	An Improved Seven-Level PUC Inverter Topology With Voltage Boosting. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 127-131.	2.2	70
10	High Gain Active Neutral Point Clamped Seven-Level Self-Voltage Balancing Inverter. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 2567-2571.	2.2	69
11	A New Generalized Multilevel Converter Topology Based on Cascaded Connection of Basic Units. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7, 2498-2512.	3.7	64
12	A Single DC Source Nine-Level Switched-Capacitor Boost Inverter Topology With Reduced Switch Count. IEEE Access, 2020, 8, 5840-5851.	2.6	61
13	Reduced Switch Count Based Single Source 7L Boost Inverter Topology. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 3252-3256.	2.2	54
14	Cross Connected Compact Switched-Capacitor Multilevel Inverter (C ³ -SCMLI) Topology With Reduced Switch Count. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 3287-3291.	2.2	47
15	A New Multilevel Inverter Topology With Reduced Power Components for Domestic Solar PV Applications. IEEE Access, 2020, 8, 187483-187497.	2.6	46
16	Fast charging converter and control algorithm for solar PV battery and electrical grid integrated electric vehicle charging station. Automatika, 2020, 61, 614-625.	1.2	46
17	Common-Ground-Type Five-Level Transformerless Inverter Topology With Full DC-Bus Utilizaton. IEEE Transactions on Industry Applications, 2020, , 1-1.	3.3	37
18	A New Symmetric Multilevel Inverter Topology Using Single and Double Source Sub-Multilevel Inverters. Journal of Power Electronics, 2015, 15, 96-105.	0.9	37

JAGABAR SATHIK

#	Article	IF	CITATIONS
19	A New Generalized Multilevel Converter Topology With Reduced Voltage on Switches, Power losses, and Components. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7, 1094-1106.	3.7	35
20	A New Eight Switch Seven Level Boost Active Neutral Point Clamped (8S-7L-BANPC) Inverter. IEEE Access, 2020, 8, 203972-203981.	2.6	30
21	A new generalized switched diode multilevel inverter topology with reduced switch count and voltage on switches. International Journal of Circuit Theory and Applications, 2020, 48, 619-637.	1.3	29
22	A Five-Level Boosting Inverter for PV Application. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 5016-5025.	3.7	29
23	A Generalized Multilevel Inverter Topology With Reduction of Total Standing Voltage. IEEE Access, 2020, 8, 168941-168950.	2.6	28
24	A novel cross-connected multilevel inverter topology for higher number of voltage levels with reduced switch count. International Transactions on Electrical Energy Systems, 2020, 30, e12381.	1.2	26
25	A New Switched DC-Link Capacitor-based Multi-level Converter (SDC ² MLC). Electric Power Components and Systems, 2017, 45, 1001-1015.	1.0	25
26	Compact Seven-Level Boost Type Inverter Topology. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 1358-1362.	2.2	24
27	Experimental validation of new self-voltage balanced 9L-ANPC inverter for photovoltaic applications. Scientific Reports, 2021, 11, 5067.	1.6	24
28	Design and implementation of a new unity gain nineâ€level active neutral point clamped multilevel inverter topology. IET Power Electronics, 2020, 13, 3204-3208.	1.5	24
29	A Single-Stage Common Ground-Type Transformerless Five-Level Inverter Topology. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2022, 10, 837-845.	3.7	22
30	Performance improvement of solar PV power conversion system through low duty cycle DCâ€ĐC converter. International Journal of Circuit Theory and Applications, 2021, 49, 267-282.	1.3	22
31	A new asymmetric dual source multilevel inverter topology with reduced power switches. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers,Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2019, 42, 460-472.	0.6	21
32	A new generalized cascade multilevel converter topology and its improved modulation technique. International Journal of Circuit Theory and Applications, 2021, 49, 1103-1120.	1.3	21
33	A New Symmetric Cascaded Multilevel Inverter Topology Using Single and Double Source Unit. Journal of Power Electronics, 2015, 15, 951-963.	0.9	21
34	Dual Boost Five-Level Switched-Capacitor Inverter With Common Ground. IEEE Transactions on Circuits and Systems II: Express Briefs, 2023, 70, 556-560.	2.2	21
35	An Original Hybrid Multilevel DC-AC Converter Using Single-Double Source Unit for Medium Voltage Applications: Hardware Implementation and Investigation. IEEE Access, 2020, 8, 71291-71301.	2.6	20
36	New switched-capacitor-based boost inverter topology with reduced switch count. Journal of Power Electronics, 2020, 20, 926-937.	0.9	20

JAGABAR SATHIK

#	Article	IF	CITATIONS
37	Switchedâ€capacitor multilevel inverter with selfâ€voltageâ€balancing for highâ€frequency power distribution system. IET Power Electronics, 2020, 13, 1807-1818.	1.5	19
38	Switchedâ€capacitorâ€based boost multilevel inverter topology with higher voltage gain. IET Power Electronics, 2020, 13, 3209-3212.	1.5	19
39	Switched Capacitor-Based 13L Inverter Topology for High-Frequency AC Power Distribution System. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 9, 5883-5894.	3.7	18
40	Improved "K―type sevenâ€level switched capacitor inverter topology with Selfâ€voltage balancing. International Journal of Circuit Theory and Applications, 2020, 48, 1800-1819.	1.3	17
41	Sevenâ€level boosting active neutral point clamped inverter using crossâ€connected switched capacitor cells. IET Power Electronics, 2020, 13, 1919-1924.	1.5	16
42	Optimal Dynamic Scheduling of Electric Vehicles in a Parking Lot Using Particle Swarm Optimization and Shuffled Frog Leaping Algorithm. Energies, 2020, 13, 6384.	1.6	16
43	A New Hybrid Zeta-Boost Converter With Active Quad Switched Inductor for High Voltage Gain. IEEE Access, 2021, 9, 20022-20034.	2.6	16
44	Modified LUO High Gain DC-DC Converter With Minimal Capacitor Stress for Electric Vehicle Application. IEEE Access, 2021, 9, 122335-122350.	2.6	15
45	New Grid-Connected Multilevel Boost Converter Topology with Inherent Capacitors Voltage Balancing Using Model Predictive Controller. , 2020, , .		14
46	Experimental validation of nineâ€level switchedâ€capacitor inverter topology with high voltage gain. International Journal of Circuit Theory and Applications, 2021, 49, 2479-2493.	1.3	13
47	A New Multilevel Inverter Topology with Reduced DC Sources. Energies, 2021, 14, 4709.	1.6	13
48	Seven Level T-Type Switched Capacitor Inverter Topology for PV Applications. IEEE Access, 2021, 9, 85049-85059.	2.6	13
49	Generalized Cascaded Symmetric and Level Doubling Multilevel Converter Topology with Reduced THD for Photovoltaic Applications. Electronics (Switzerland), 2019, 8, 161.	1.8	13
50	Compact Quadratic Boost Switched-Capacitor Inverter. IEEE Transactions on Industry Applications, 2022, 58, 4923-4931.	3.3	13
51	Symmetric switched diode multilevel inverter structure with minimised switch count. Journal of Engineering, 2017, 2017, 469-478.	0.6	12
52	A Hybrid Switched Capacitor Multi-Level Inverter with High Voltage Gain and Self-Voltage Balancing Ability. Electric Power Components and Systems, 2020, 48, 755-768.	1.0	12
53	A review on segregation of various high gain converter configurations for distributed energy sources. AEJ - Alexandria Engineering Journal, 2022, 61, 675-700.	3.4	11
54	Design of nine step switched capacitor multilevel inverter and its cascaded extension. International Journal of Circuit Theory and Applications, 2021, 49, 1182-1201.	1.3	10

Jagabar Sathik

#	Article	IF	CITATIONS
55	Reliability Analysis of Power Components in Restructured DC/DC Converters. IEEE Transactions on Device and Materials Reliability, 2021, 21, 544-555.	1.5	10
56	A New 5-Level ANPC Switched Capacitor Inverter Topology for Photovoltaic Applications. , 2019, , .		9
57	A Multilevel Inverter Topology Using Diode Half-Bridge Circuit with Reduced Power Component. Energies, 2021, 14, 7249.	1.6	9
58	Modified "Kâ€â€ŧype multilevel inverter topology with reduced switches, DC sources, and power loss. International Transactions on Electrical Energy Systems, 2020, 30, e12345.	1.2	8
59	A New Asymmetric and Cascaded Switched Diode Multilevel Inverter Topology for Reduced Switches, DC Source and Blocked Voltage on Switches. Journal of Circuits, Systems and Computers, 2019, 28, 1950064.	1.0	7
60	A New Switched-Ladder Multilevel Converter Structure with Reduced Power Electronic Components. Journal of Circuits, Systems and Computers, 2021, 30, .	1.0	7
61	A Unique Unified Wind Speed Approach to Decision-Making for Dispersed Locations. Sustainability, 2021, 13, 9340.	1.6	7
62	A new symmetric multilevel converter topology with reduced voltage on switches and DC source. , 2018, , .		6
63	Investigation of novel symmetric and asymmetric multilevel converter topology with reduced power switches. International Journal of Power Electronics, 2015, 7, 226.	0.1	4
64	Three-Dimensional Space Vector Modulation Strategy for Capacitor Balancing in Split Inductor Neutral-Point Clamped Multilevel Inverters. Journal of Circuits, Systems and Computers, 2018, 27, 1850232.	1.0	4
65	Reduced Component Boost Seven-Level Inverter (RCB7LI) with Self-Voltage Balancing. , 2020, , .		4
66	A New Hybrid Multilevel Inverter Topology for Medium and High Voltage Applications. Applied Mathematics and Information Sciences, 2017, 11, 497-508.	0.7	4
67	A new seven level boost-type ANPC inverter topology for photovoltaic applications. Scientific Reports, 2021, 11, 22487.	1.6	4
68	Common ground type five level inverter with voltage boosting for PV applications. Scientific Reports, 2022, 12, 4924.	1.6	4
69	Hybrid Multilevel Inverter Topology With Reduced Part Count. , 2018, , .		3
70	Switched-Capacitor-Based Three-Phase Five-Level Inverter Topology With Reduced Components. , 2018, ,		3
71	Expandable transformer-less high-gain dc–dc converter based on quasi-Z source and multiplier cells. Sadhana - Academy Proceedings in Engineering Sciences, 2021, 46, 1.	0.8	3
72	A Reduced Switch Count Boost Inverter (RSC- BI) Topology with Triple Voltage Gain. , 2020, , .		3

5

JAGABAR SATHIK

#	Article	IF	CITATIONS
73	Reduced component high voltage boost single-source switched capacitor inverter. Sadhana - Academy Proceedings in Engineering Sciences, 2022, 47, 1.	0.8	3
74	Three-Phase Magnetic-Less Boosting Multilevel Inverter Topology With Reduced Components. , 2019, , .		2
75	A New Configuration of Switch and Source Fault-Tolerant Dual-Input Single-Output DC-DC Converter. , 2021, , .		2
76	Creative Structure of Symmetric and Asymmetric Multilevel Converter Topology Using Single-Double Source Unit. Applied Mathematics and Information Sciences, 2017, 11, 573-583.	0.7	1
77	Modified GSM based data logger system with two way communication. , 2012, , .		0
78	New cascaded multilevel converter topology based on basic unit with reduction of DC sources. , 2015, , \cdot		0
79	Evaluation of DG impacts on distribution networks. , 2021, , 195-209.		0
80	A case study with power quality analysis on building integrated PV (BIPV) system. , 2021, , 541-562.		0
81	Guest editorial: Modelling, methodologies and control techniques of DC/AC power conversion topologies for small―and largeâ€scale photovoltaic power systems. IET Power Electronics, 2021, 14, 2027-2030.	1.5	0
82	Modified Selective Harmonics Mitigation PWM for a Switched Diode Multilevel Inverter. ECS Journal of Solid State Science and Technology, 2021, 10, 091015.	0.9	0
83	An Innovative Structure of Single Phase Multi-Step DC-AC Converter with Addition-Subtraction in DC Voltage Sources. Asian Journal of Research in Social Sciences and Humanities, 2017, 7, 1162.	0.0	0
84	A New Compact Multilevel Inverter Design with Less Power Electronics Component. Advances in Intelligent Systems and Computing, 2020, , 661-669.	0.5	0