
Alexandre F Léonard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4429474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A practical method to characterize proton exchange membrane fuel cell catalyst layer topography: Application to two coating techniques and two carbon supports. Thin Solid Films, 2020, 695, 137751.	1.8	7
2	Understanding the Influence of Surface Oxygen Groups on the Electrochemical Behavior of Porous Carbons as Anodes for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 36054-36065.	8.0	17
3	Understanding the effect of the mesopore volume of ordered mesoporous carbons on their electrochemical behavior as Li-ion battery anodes. Microporous and Mesoporous Materials, 2020, 306, 110417.	4.4	7
4	Insights on palladium decorated nitrogen-doped carbon xerogels for the hydrogen production from formic acid. Catalysis Today, 2019, 324, 90-96.	4.4	40
5	Safe and green Li-ion batteries based on LiFePO4 and Li4Ti5O12 sprayed as aqueous slurries with xanthan gum as common binder. Materials Today Energy, 2019, 12, 168-178.	4.7	23
6	How do the micropores of carbon xerogels influence their electrochemical behavior as anodes for lithium-ion batteries?. Microporous and Mesoporous Materials, 2019, 275, 278-287.	4.4	22
7	State of health estimation for lithium ion batteries based on an equivalent-hydraulic model: An iron phosphate application. Journal of Energy Storage, 2019, 21, 259-271.	8.1	36
8	Effect of nitrogen doping on the pore texture of carbon xerogels based on resorcinol-melamine-formaldehyde precursors. Microporous and Mesoporous Materials, 2018, 256, 190-198.	4.4	27
9	Aqueous and organic inks of carbon xerogels as models for studying the role of porosity in lithium-ion battery electrodes. Materials and Design, 2016, 109, 282-288.	7.0	22
10	Carbon xerogels as model materials: toward a relationship between pore texture and electrochemical behavior as anodes for lithium-ion batteries. Journal of Materials Science, 2016, 51, 4358-4370.	3.7	18
11	Development of Novel Solid Materials for High Power Li Polymer Batteries (SOMABAT). Recyclability of Components. Lecture Notes in Mobility, 2015, , 19-32.	0.2	0
12	Singleâ€Walled Metal–Organic Nanotube Built from a Simple Synthon. Chemistry - A European Journal, 2015, 21, 4300-4307.	3.3	37
13	Correlation between morphology and electrical conductivity of dried and carbonized multi-walled carbon nanotube/resorcinol–formaldehyde xerogel composites. Journal of Materials Science, 2015, 50, 6007-6020.	3.7	14
14	Influence of the textural parameters of resorcinol–formaldehyde dry polymers and carbon xerogels on particle sizes upon mechanical milling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 471, 124-132.	4.7	20
15	Phosphine- and ammonium-functionalized ordered mesoporous carbons as supports for cluster-derived metal nanoparticles. Catalysis Today, 2014, 235, 112-126.	4.4	10
16	Selective and Reusable Iron(II)-Based Molecular Sensor for the Vapor-Phase Detection of Alcohols. Inorganic Chemistry, 2014, 53, 1263-1265.	4.0	61
17	Functionalization of carbon xerogels for the preparation of palladium supported catalysts applied in sugar transformations. Applied Catalysis B: Environmental, 2014, 148-149, 424-435.	20.2	20
18	Rapid aqueous synthesis of ordered mesoporous carbons: Investigation of synthesis variables and application as anode materials for Li-ion batteries. Microporous and Mesoporous Materials, 2014, 195, 92-101.	4.4	15

#	Article	IF	CITATIONS
19	Macroporous poly(ionic liquid) and poly(acrylamide) monoliths from CO2-in-water emulsion templates stabilized by sugar-based surfactants. Journal of Materials Chemistry A, 2013, 1, 8479.	10.3	36
20	Préparation, caractérisation et réactivité de l'acide 1-vanado-11-molybdo-phosphorique supporté des matériaux silicatés mésoporeux dans l'oxydation du propène. Comptes Rendus Chimie, 2012, 15, 658-668.	sur 0.5	1
21	Synthesis of microsphere-loaded porous polymers by combining emulsion and dispersion polymerisations in supercritical carbon dioxide. Chemical Communications, 2012, 48, 8356.	4.1	15
22	Mechanical testing of electrospun PCL fibers. Acta Biomaterialia, 2012, 8, 218-224.	8.3	245
23	Characterization of H3+xPMo12â^'xVxO40 heteropolyacids supported on HMS mesoporous molecular sieve and their catalytic performance in propene oxidation. Microporous and Mesoporous Materials, 2012, 154, 153-163.	4.4	23
24	Novel photosynthetic CO2bioconvertor based on green algae entrapped in low-sodium silica gels. Journal of Materials Chemistry, 2011, 21, 951-959.	6.7	36
25	(Di)-aminoguanidine Functionalization through Transamination: An Avenue to an Auspicious Class of Supramolecular Synthons. Crystal Growth and Design, 2011, 11, 4034-4043.	3.0	12
26	Superlative Scaffold of 1,2,4-Triazole Derivative of Glycine Steering Linear Chain to a Chiral Helicate. Crystal Growth and Design, 2011, 11, 1375-1384.	3.0	26
27	Whole-cell based hybrid materials for green energy production, environmental remediation and smart cell-therapy. Chemical Society Reviews, 2011, 40, 860.	38.1	117
28	Self-formation phenomenon to hierarchically structured porous materials: design, synthesis, formation mechanism and applications. Chemical Communications, 2011, 47, 2763.	4.1	179
29	Designing Photobioreactors based on Living Cells Immobilized in Silica Gel for Carbon Dioxide Mitigation. ChemSusChem, 2011, 4, 1249-1257.	6.8	16
30	Genesis of active and inactive species during the preparation of MoO3/SiO2–Al2O3 metathesis catalysts via wet impregnation. Catalysis Today, 2011, 169, 60-68.	4.4	45
31	Prolonging the lifetime and activity of silica immobilised Cyanidium caldarium. Journal of Colloid and Interface Science, 2011, 356, 159-164.	9.4	14
32	Cyanobacteria immobilised in porous silica gels: exploring biocompatible synthesis routes for the development of photobioreactors. Energy and Environmental Science, 2010, 3, 370.	30.8	56
33	Hybrid photosynthetic materials derived from microalgae Cyanidium caldarium encapsulated within silica gel. Journal of Colloid and Interface Science, 2010, 344, 348-352.	9.4	21
34	Preparation and characterization of HMS supported 11-molybdo-vanado-phosphoric acid for selective oxidation of propylene. Microporous and Mesoporous Materials, 2010, 130, 103-114.	4.4	40
35	Preparation of CMI-1 supported H3+xPMo12-xVxO40 for the selective oxidation of propylene. Studies in Surface Science and Catalysis, 2010, , 665-669.	1.5	2
36	Insight into Cellular Response of Plant Cells Confined within Silica-Based Matrices. Langmuir, 2010, 26, 6568-6575.	3.5	34

#	Article	IF	CITATIONS
37	Thermal Spreading As an Alternative for the Wet Impregnation Method: Advantages and Downsides in the Preparation of MoO3/SiO2â^Al2O3 Metathesis Catalysts. Journal of Physical Chemistry C, 2010, 114, 18664-18673.	3.1	42
38	Engineering Three-Dimensional Chains of Porous Nanoballs from a 1,2,4-Triazole-carboxylate Supramolecular Synthon. Crystal Growth and Design, 2010, 10, 1798-1807.	3.0	49
39	Living hybrid materials capable of energy conversion and CO2 assimilation. Chemical Communications, 2010, 46, 3843.	4.1	64
40	Design of photochemical materials for carbohydrate production via the immobilisation of whole plant cells into a porous silica matrix. Journal of Materials Chemistry, 2010, 20, 929-936.	6.7	37
41	Targeting photobioreactors: Immobilisation of cyanobacteria within porous silica gel using biocompatible methods. Journal of Materials Chemistry, 2008, 18, 1333.	6.7	61
42	HIERARCHICAL MACRO-MESOPOROUS OXIDES AND CARBONS: TOWARDS NEW AND MORE EFFICIENT HIERARCHICAL CATALYSIS. Annual Review of Nano Research, 2008, , 393-438.	0.2	1
43	Photosynthesis within porous silica gel: viability and activity of encapsulated cyanobacteria. Journal of Materials Chemistry, 2008, 18, 2833.	6.7	36
44	Energy from photobioreactors: Bioencapsulation of photosynthetically active molecules, organelles, and whole cells within biologically inert matrices. Pure and Applied Chemistry, 2008, 80, 2345-2376.	1.9	47
45	Acute renal failure secondary to oxalosis in a recipient of a simultaneous kidney-pancreas transplant: was mycophenolate the cause?. Nephrology Dialysis Transplantation, 2008, 24, 326-326.	0.7	1
46	A mechanistic study on the degradation of highly ordered, non-ionic surfactant templated aluminosilicate mesoporous materials Al-CMI-1 in boiling water. Studies in Surface Science and Catalysis, 2007, 165, 113-116.	1.5	1
47	Hierarchical aluminosilicate macrochannels with structured mesoporous walls: Towards a single catalyst for multistep reactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 300, 129-135.	4.7	33
48	Self-formation of hierarchical micro-meso-macroporous structures: Generation of the new concept "Hierarchical Catalysis― Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 300, 70-78.	4.7	95
49	Highly Ordered Mesoporous and Hierarchically Nanostructured Meso-macroporous Materials for Nanotechnology, Biotechnology, Information Technology and Medical Applications. Nanopages, 2006, 1, 1-44.	0.2	14
50	Highly ordered mesoporous CMI-n materials and hierarchically structured meso–macroporous compositions. Comptes Rendus Chimie, 2005, 8, 713-726.	0.5	31
51	A novel and template-free method for the spontaneous formation of aluminosilicate macro-channels with mesoporous walls. Chemical Communications, 2004, , 1674-1675.	4.1	48
52	Title is missing!. Angewandte Chemie, 2003, 115, 2978-2981.	2.0	41
53	Hierarchically Mesoporous/Macroporous Metal Oxides Templated from Polyethylene Oxide Surfactant Assemblies. Angewandte Chemie - International Edition, 2003, 42, 2872-2875.	13.8	215
54	Chemistry of silica at different concentrations of non-ionic surfactant solutions: effect of pH of the synthesis gel on the preparation of mesoporous silicas. Microporous and Mesoporous Materials, 2003, 63, 59-73.	4.4	37

Alexandre F Léonard

#	Article	IF	CITATIONS
55	Toward a Better Control of Internal Structure and External Morphology of Mesoporous Silicas Synthesized Using a Nonionic Surfactant. Langmuir, 2003, 19, 5484-5490.	3.5	39
56	One-pot surfactant assisted synthesis of aluminosilicate macrochannels with tunable micro- or mesoporous wall structure. Chemical Communications, 2003, , 2568-2569.	4.1	47
57	Surfactant-assisted synthesis of unprecedented hierarchical meso-macrostructured zirconia. Chemical Communications, 2003, , 1558-1559.	4.1	83
58	Control of ordered mesoporous molecular sieves synthesis using non-ionic surfactants by incorporation of transition metal ions in the micellar solution. Studies in Surface Science and Catalysis, 2003, 146, 243-246.	1.5	4
59	Synthesis of Large Pore Disordered MSU-Type Mesoporous Silicas through the Assembly of C16(EO)10 Surfactant and TMOS Silica Source: Effect of the Hydrothermal Treatment and Thermal Stability of Materials. Journal of Physical Chemistry B, 2001, 105, 6070-6079.	2.6	68
60	Well-Ordered Spherical Mesoporous Materials CMI-1 Synthesized via an Assembly of Decaoxyethylene Cetyl Ether and TMOS. Chemistry of Materials, 2001, 13, 3542-3553.	6.7	125