Xiaodong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4429225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced densification and mechanical properties of β-boron by in-situ formed boron-rich oxide. Journal of Materials Science and Technology, 2022, 99, 148-160.	10.7	7
2	Occurrence of the R-phase with increased stability induced by low temperature precipitate-free aging in a Ni50.9Ti49.1 alloy. Acta Materialia, 2022, 227, 117688.	7.9	18
3	Shear band formation during nanoindentation of EuB6 rare-earth hexaboride. Communications Materials, 2022, 3, .	6.9	3
4	Vacancy-driven shear localization in silicon nitride. Scripta Materialia, 2021, 190, 163-167.	5.2	1
5	Microstructural origin of ultrahigh damping capacity in Ni50.8Ti49.2 alloy containing nanodomains induced by insufficient annealing and low-temperature aging. Acta Materialia, 2021, 205, 116541.	7.9	29
6	Dislocation-mediated shear amorphization in boron carbide. Science Advances, 2021, 7, .	10.3	49
7	One-dimensional Co–Cu–Fe–Ni–Zn high-entropy alloy nanostructures. Materials Research Letters, 2021, 9, 285-290.	8.7	10
8	An advancement in the synthesis of unique soft magnetic CoCuFeNiZn high entropy alloy thin films. Scientific Reports, 2021, 11, 8836.	3.3	26
9	Observations of multi-component boride precipitates in ultrahard boron carbide. Materials Characterization, 2021, 176, 111106.	4.4	2
10	Atomic Ni and Cu co-anchored 3D nanoporous graphene as an efficient oxygen reduction electrocatalyst for zinc–air batteries. Nanoscale, 2021, 13, 10862-10870.	5.6	21
11	Effect of deformation induced B2 precipitates on the microstructure and mechanical property of Al0.3CoCrFeNi high-entropy alloy. Journal of Alloys and Compounds, 2020, 821, 153445.	5.5	13
12	Atomic-scale understanding of the γ/α2 interface in a TiAl alloy. Journal of Alloys and Compounds, 2020, 846, 156381.	5.5	12
13	Structures and Structural Evolution of Sublayer Surfaces of Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 21419-21424.	13.8	18
14	Structures and Structural Evolution of Sublayer Surfaces of Metal–Organic Frameworks. Angewandte Chemie, 2020, 132, 21603-21608.	2.0	2
15	In-situ observation of microcrack evolution in a dual-phase steel during tensile straining. Materials Science and Technology, 2020, 36, 674-680.	1.6	1
16	Realization of Selective Strengthening of Ferrite by Nb/V Microalloying in a Medium Carbon Lightweight Î-TRIP Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 2460-2468.	2.2	4
17	Dealloying Kinetics of AgAu Nanoparticles by <i>In Situ</i> Liquid-Cell Scanning Transmission Electron Microscopy. Nano Letters, 2020, 20, 1944-1951.	9.1	47
18	Van der Waals interfacial reconstruction in monolayer transition-metal dichalcogenides and gold heterojunctions. Nature Communications, 2020, 11, 1011.	12.8	47

XIAODONG WANG

#	Article	IF	CITATIONS
19	Study on the precipitates in various aging stages and composite strengthening effect of precipitates and long-period stacking ordered structure of Mg–Gd–Y–Ni alloy. Journal of Materials Research, 2020, 35, 172-184.	2.6	4
20	Ultrahigh damping capacity achieved by modulating R phase in Ti49.2Ni50.8 shape memory alloy wires. Scripta Materialia, 2020, 183, 102-106.	5.2	17
21	Microstructure and mechanical properties of Nb and Ti microalloyed lightweight δ-TRIP steel. Materials Characterization, 2020, 164, 110324.	4.4	23
22	Graphite interface mediated grain-boundary sliding leads to enhanced mechanical properties of nanocrystalline silicon carbide. Materialia, 2019, 7, 100394.	2.7	6
23	Effect of secondary phases' structure on the dielectric properties of β-SiAlON. Materials Characterization, 2019, 155, 109815.	4.4	9
24	Deformation behavior of ultrahard Al0.3CoCrFeNi high-entropy alloy treated by plasma nitriding. Materials Letters, 2019, 255, 126566.	2.6	7
25	Photomechanical effect leading to extraordinary ductility in covalent semiconductors. Physical Review B, 2019, 100, .	3.2	11
26	Precipitation of T ₁ phase in 2198 Al–Li alloy studied by atomic-resolution HAADF-STEM. Journal of Materials Research, 2019, 34, 3535-3544.	2.6	18
27	The atomic origin of nickel-doping-induced catalytic enhancement in MoS ₂ for electrochemical hydrogen production. Nanoscale, 2019, 11, 7123-7128.	5.6	75
28	Room-temperature superplasticity in Au nanowires and their atomistic mechanisms. Nanoscale, 2019, 11, 8727-8735.	5.6	9
29	A phenomenon of strain induced bainitic transformation and its effect on strength enhancement in a lightweight transformation-induced-plasticity steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 751, 340-350.	5.6	5
30	Atomic scale structural characterization of B2 phase precipitated along FCC twin boundary in a CoCrFeNiAl0.3 high entropy alloy. Scripta Materialia, 2019, 162, 161-165.	5.2	21
31	The austenite reversion and co-precipitation behavior of an ultra-low carbon medium manganese quenching-partitioning-tempering steel. Acta Materialia, 2018, 146, 126-141.	7.9	93
32	Low and room temperatures tensile properties of a nanoprecipitate-strengthened (FeCoCr)40Ni40Al10Cu10 high-entropy alloy. Materials Characterization, 2018, 145, 177-184.	4.4	9
33	Magnetic coupling in Mn ₃ O ₄ -coated γ-MnOOH nanowires. Surface Innovations, 2018, 6, 250-257.	2.3	3
34	Ordered stacking faults within nanosized silicon precipitates in aluminum alloy. Materials Letters, 2017, 190, 225-228.	2.6	4
35	Characterization of Gd-rich precipitates in a fully lamellar TiAl alloy. Scripta Materialia, 2017, 137, 50-54.	5.2	14
36	Strengthening effect of nanoscale precipitation and transformation induced plasticity in a hot rolled copper-containing ferrite-based lightweight steel. Scripta Materialia, 2017, 129, 25-29.	5.2	23

#	Article	IF	CITATIONS
37	Effect of Coiling Temperature on Microstructure and Tensile Behavior of a Hot-Rolled Ferritic Lightweight Steel. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 5918-5931.	2.2	11
38	Microstructual Evolution of a Medium Carbon Advanced High Strength Steel Heat-Treated by Quenching-Partitioning Process. Steel Research International, 2015, 86, 252-256.	1.8	5
39	Direct Evidence for the Modulation Caused by Ti Substitution of Ta in a (<scp><scp>Ta</scp></scp> /sub>0.92(<scp></scp> /sub>5)/sub>0.92(<scp></scp> /sub>5/sub>)/sub>0.92(<scp></scp> /sub>1000000000000000000000000000000000000	scpa‰ariO </td <td>scp»</td>	scp»
40	Effects of rare earth addition on microstructure and mechanical properties of a Fe–15Mn–1.5Al–0.6C TWIP steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 608, 106-113.	5.6	60
41	Microstructual Evolution of a Medium Carbon Advanced High Strength Steel Heat-Treated by Quenching-Partitioning Process. , 2013, , 885-889.		0
42	EFFECT OF NITROGEN ON MARTENSITIC TRANSFORMATION AND MECHANICAL PROPERTIES OF TWIP STEEL. Jinshu Xuebao/Acta Metallurgica Sinica, 2013, 48, 769-774.	0.3	2
43	Microstructual Evolution of a Medium Carbon Advanced High Strength Steel Heat-Treated by Quenching-Partitioning Process. , 2013, , 885-889.		Ο
44	Orientation Relationships between Ferrite and Cementite by Edge-to-edge Matching Principle. Journal of Materials Science and Technology, 2011, 27, 475-480.	10.7	18
45	Microstructures in a resistance spot welded high strength dual phase steel. Materials Characterization, 2010, 61, 341-346.	4.4	44
46	Measurement of microstructural parameters of nanocrystalline Fe–30wt.%Ni alloy produced by surface mechanical attrition treatment. Journal of Alloys and Compounds, 2009, 474, 546-550.	5.5	45
47	Grain growth kinetics of nanocrystalline martensite in Fe–30Âwt.%Ni alloy. Materials Letters, 2008, 62, 3262-3265.	2.6	6
48	Design and Characterization for Advanced High Strength Nb-Containing Dual-Phase Steels. , 0, , 173-178.		0