## Riku Jarvinen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4428929/publications.pdf Version: 2024-02-01



RIVII IADVINEN

| #  | Article                                                                                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Non-thermal escape of the martian CO <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e4486" altimg="si106.svg"&gt;<mml:msub><mml:mrow<br>/&gt;<mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow<br></mml:msub></mml:math> atmosphere over time:<br>Constrained by Ar isotopes. Icarus, 2022, 382, 115009. | 2.5 | 6         |
| 2  | Ultraâ€Iow Frequency Foreshock Waves and Ion Dynamics at Mars. Journal of Geophysical Research:<br>Space Physics, 2022, 127, .                                                                                                                                                                                                                   | 2.4 | 5         |
| 3  | Particleâ€Inâ€Cell Modeling of Martian Magnetic Cusps and Their Role in Enhancing Nightside Ionospheric<br>Ion Escape. Geophysical Research Letters, 2021, 48, .                                                                                                                                                                                 | 4.0 | 7         |
| 4  | BepiColombo Science Investigations During Cruise and Flybys at the Earth, Venus and Mercury. Space Science Reviews, 2021, 217, 1.                                                                                                                                                                                                                | 8.1 | 25        |
| 5  | Remote sensing of cometary bow shocks: modelled asymmetric outgassing and pickup ion observations. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4735-4749.                                                                                                                                                                      | 4.4 | 7         |
| 6  | Ultra-low-frequency waves in the ion foreshock of Mercury: a global hybrid modelling study.<br>Monthly Notices of the Royal Astronomical Society, 2020, 491, 4147-4161.                                                                                                                                                                          | 4.4 | 18        |
| 7  | Solar Intensity X-Ray and Particle Spectrometer SIXS: Instrument Design and First Results. Space Science Reviews, 2020, 216, 1.                                                                                                                                                                                                                  | 8.1 | 20        |
| 8  | Oxygen Ion Escape From Venus Is Modulated by Ultra‣ow Frequency Waves. Geophysical Research<br>Letters, 2020, 47, e2020GL087462.                                                                                                                                                                                                                 | 4.0 | 12        |
| 9  | Planetary magnetic field control of ion escape from weakly magnetized planets. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2108-2120.                                                                                                                                                                                          | 4.4 | 41        |
| 10 | Hybrid modeling of cometary plasma environments. Astronomy and Astrophysics, 2019, 630, A45.                                                                                                                                                                                                                                                     | 5.1 | 12        |
| 11 | Properties of Magnetic Reconnection and FTEs on the Dayside Magnetopause With and Without<br>Positive IMF <i>B</i> <sub><i>x</i></sub> Component During Southward IMF. Journal of Geophysical<br>Research: Space Physics, 2019, 124, 4037-4048.                                                                                                  | 2.4 | 25        |
| 12 | Stellar influence on heavy ion escape from unmagnetized exoplanets. Monthly Notices of the Royal<br>Astronomical Society, 2019, 486, 1283-1291.                                                                                                                                                                                                  | 4.4 | 12        |
| 13 | Oxygen Ion Energization at Mars: Comparison of MAVEN and Mars Express Observations to Global<br>Hybrid Simulation. Journal of Geophysical Research: Space Physics, 2018, 123, 1678-1689.                                                                                                                                                         | 2.4 | 21        |
| 14 | Ion Acceleration by Flux Transfer Events in the Terrestrial Magnetosheath. Geophysical Research<br>Letters, 2018, 45, 1723-1731.                                                                                                                                                                                                                 | 4.0 | 17        |
| 15 | Comparison of Global Martian Plasma Models in the Context of MAVEN Observations. Journal of<br>Geophysical Research: Space Physics, 2018, 123, 3714-3726.                                                                                                                                                                                        | 2.4 | 15        |
| 16 | Precipitation of Hydrogen Energetic Neutral Atoms at the Upper Atmosphere of Mars. Journal of<br>Geophysical Research: Space Physics, 2018, 123, 8730-8748.                                                                                                                                                                                      | 2.4 | 13        |
| 17 | Fast plasma sheet flows and X line motion in the Earth's magnetotail: results from a global<br>hybrid-Vlasov simulation. Annales Geophysicae, 2018, 36, 1183-1199.                                                                                                                                                                               | 1.6 | 11        |
| 18 | Cavitons and spontaneous hot flow anomalies in a hybrid-Vlasov global magnetospheric simulation.<br>Annales Geophysicae, 2018, 36, 1081-1097.                                                                                                                                                                                                    | 1.6 | 12        |

Riku Jarvinen

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Foreshock Properties at Typical and Enhanced Interplanetary Magnetic Field Strengths: Results From<br>Hybridâ€Vlasov Simulations. Journal of Geophysical Research: Space Physics, 2018, 123, 5476-5493. | 2.4 | 30        |
| 20 | Asymmetries in the Magnetosheath Field Draping on Venus' Nightside. Journal of Geophysical Research:<br>Space Physics, 2017, 122, 10,396.                                                               | 2.4 | 8         |
| 21 | Emission of hydrogen energetic neutral atoms from the Martian subsolar magnetosheath. Journal of<br>Geophysical Research: Space Physics, 2016, 121, 190-204.                                            | 2.4 | 11        |
| 22 | Dynamics of planetary ions in the induced magnetospheres of Venus and Mars. Planetary and Space<br>Science, 2016, 127, 1-14.                                                                            | 1.7 | 22        |
| 23 | Dust environment of an airless object: A phase space study with kinetic models. Planetary and Space<br>Science, 2016, 120, 56-69.                                                                       | 1.7 | 4         |
| 24 | Forcing continuous reconnection in hybrid simulations. Physics of Plasmas, 2014, 21, 072906.                                                                                                            | 1.9 | 0         |
| 25 | On vertical electric fields at lunar magnetic anomalies. Geophysical Research Letters, 2014, 41, 2243-2249.                                                                                             | 4.0 | 39        |
| 26 | Energization of planetary pickup ions in the solar system. Journal of Geophysical Research E: Planets, 2014, 119, 219-236.                                                                              | 3.6 | 18        |
| 27 | A new 3â€Ð spherical hybrid model for solar wind interaction studies. Journal of Geophysical Research:<br>Space Physics, 2013, 118, 5157-5168.                                                          | 2.4 | 9         |
| 28 | Hemispheric asymmetries of the Venus plasma environment. Journal of Geophysical Research: Space<br>Physics, 2013, 118, 4551-4563.                                                                       | 2.4 | 43        |
| 29 | Energetic protons at Mars: interpretation of SLED/Phobos-2 observations by a kinetic model. Annales<br>Geophysicae, 2012, 30, 1595-1609.                                                                | 1.6 | 6         |
| 30 | Hybrid simulations of proton precipitation patterns onto the upper atmosphere of Mars. Earth,<br>Planets and Space, 2012, 64, 121-134.                                                                  | 2.5 | 12        |
| 31 | Kinetic effects on ion escape at Mars and Venus: Hybrid modeling studies. Earth, Planets and Space, 2012, 64, 157-163.                                                                                  | 2.5 | 21        |
| 32 | Magnetic shadowing of high energy ions at Mars and how this effect can be simulated using a hybrid<br>model. Earth, Planets and Space, 2012, 64, 247-256.                                               | 2.5 | 11        |
| 33 | A case study of proton precipitation at Mars: Mars Express observations and hybrid simulations.<br>Journal of Geophysical Research, 2012, 117, .                                                        | 3.3 | 28        |
| 34 | Kinetic simulations of finite gyroradius effects in the lunar plasma environment on global, meso, and<br>microscales. Planetary and Space Science, 2012, 74, 146-155.                                   | 1.7 | 42        |
| 35 | Cassini Plasma Spectrometer and hybrid model study on Titan's interaction: Effect of oxygen ions.<br>Journal of Geophysical Research, 2011, 116, n/a-n/a.                                               | 3.3 | 14        |
| 36 | On the development of a spherical hybrid model - Lessons and applications. Proceedings of the International Astronomical Union, 2010, 6, 89-91.                                                         | 0.0 | 0         |

Riku Jarvinen

| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Oxygen ion escape at Mars in a hybrid model: High energy and low energy ions. Icarus, 2010, 206, 152-163.                                                                   | 2.5 | 59        |
| 38 | Hemispheric asymmetry of the magnetic field wrapping pattern in the Venusian magnetotail.<br>Geophysical Research Letters, 2010, 37, .                                      | 4.0 | 61        |
| 39 | Widely different characteristics of oxygen and hydrogen ion escape from Venus. Geophysical Research<br>Letters, 2010, 37, .                                                 | 4.0 | 15        |
| 40 | Oxygen ion escape from Venus in a global hybrid simulation: role of the ionospheric<br>O <sup>+</sup> ions. Annales Geophysicae, 2009, 27, 4333-4348.                       | 1.6 | 31        |
| 41 | Hybrid simulations of the O+ ion escape from Venus: Influence of the solar wind density and the IMF x component. Advances in Space Research, 2009, 43, 1436-1441.           | 2.6 | 16        |
| 42 | The Venusian induced magnetosphere: A case study of plasma and magnetic field measurements on the<br>Venus Express mission. Planetary and Space Science, 2008, 56, 796-801. | 1.7 | 22        |
| 43 | Magnetized Mars: Transformation of Earth-like magnetosphere to Venus-like induced magnetosphere.<br>Planetary and Space Science, 2008, 56, 823-827.                         | 1.7 | 15        |
| 44 | On the properties of O+ and O2+ ions in a hybrid model and in Mars Express IMA/ASPERA-3 data: A case study. Planetary and Space Science, 2008, 56, 1204-1213.               | 1.7 | 17        |
| 45 | Hybrid modelling the Pioneer Venus Orbiter magnetic field observations. Advances in Space Research, 2008, 41, 1361-1374.                                                    | 2.6 | 17        |
| 46 | Simulations of solar wind charge exchange X-ray emissions at Venus. Geophysical Research Letters, 2007, 34, .                                                               | 4.0 | 16        |
| 47 | Morphology of the magnetic field near Titan: Hybrid model study of the Cassini T9 flyby. Geophysical<br>Research Letters, 2007, 34, .                                       | 4.0 | 24        |
| 48 | Oxygen ions at Titan's exobase in a Voyager 1–type interaction from a hybrid simulation. Journal of Geophysical Research, 2007, 112, .                                      | 3.3 | 33        |
| 49 | Venus–solar wind interaction: Asymmetries and the escape of ions. Planetary and Space Science, 2006, 54, 1472-1481.                                                         | 1.7 | 57        |