Yoshiyuki Nonoguchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4428923/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Systematic Conversion of Single Walled Carbon Nanotubes into n-type Thermoelectric Materials by Molecular Dopants. Scientific Reports, 2013, 3, 3344.	1.6	320
2	Simple Saltâ€Coordinated nâ€Type Nanocarbon Materials Stable in Air. Advanced Functional Materials, 2016, 26, 3021-3028.	7.8	232
3	In Situ Photopolymerization of Pyrrole in Mesoporous TiO ₂ . Langmuir, 2010, 26, 5319-5322.	1.6	73
4	Bis(dipyrrinato)metal(<scp>ii</scp>) coordination polymers: crystallization, exfoliation into single wires, and electric conversion ability. Chemical Science, 2015, 6, 2853-2858.	3.7	59
5	Waterâ€Processable, Airâ€Stable Organic Nanoparticle–Carbon Nanotube Nanocomposites Exhibiting nâ€īype Thermoelectric Properties. Small, 2017, 13, 1603420.	5.2	59
6	Chiral Monolayer-Protected Bimetallic Au–Ag Nanoclusters: Alloying Effect on Their Electronic Structure and Chiroptical Activity. Journal of Physical Chemistry C, 2014, 118, 15506-15515.	1.5	49
7	Solvent basicity promotes the hydride-mediated electron transfer doping of carbon nanotubes. Chemical Communications, 2017, 53, 10259-10262.	2.2	42
8	Ionic liquidâ€based luminescent composite materials. Polymers for Advanced Technologies, 2008, 19, 1401-1405.	1.6	38
9	Airâ€ŧolerant Fabrication and Enhanced Thermoelectric Performance of nâ€īype Singleâ€walled Carbon Nanotubes Encapsulating 1,1′â€Bis(diphenylphosphino)ferrocene. Chemistry - an Asian Journal, 2016, 11, 2423-2427.	1.7	36
10	Sensitized Photopolymerization of an Ionic Liquid-Based Monomer by Using CdTe Nanocrystals. Macromolecules, 2007, 40, 6540-6544.	2.2	35
11	Tuning Band Offsets of Core/Shell CdS/CdTe Nanocrystals. Small, 2009, 5, 2403-2406.	5.2	34
12	Synergistic Impacts of Electrolyte Adsorption on the Thermoelectric Properties of Singleâ€Walled Carbon Nanotubes. Small, 2017, 13, 1700804.	5.2	34
13	Size- and Temperature-Dependent Emission Properties of Zinc-blende CdTe Nanocrystals in Ionic Liquid. Journal of Physical Chemistry C, 2007, 111, 11811-11815.	1.5	30
14	Dual Transient Bleaching of Au/PbS Hybrid Core/Shell Nanoparticles. Journal of Physical Chemistry Letters, 2012, 3, 1111-1116.	2.1	29
15	C/BCN core/shell nanotube films with improved thermoelectric properties. Carbon, 2016, 109, 49-56.	5.4	28
16	Enhanced Chiroptical Activity in Glutathione-Protected Bimetallic (AuAg) ₁₈ Nanoclusters with Almost Intact Core–Shell Configuration. Journal of Physical Chemistry C, 2016, 120, 1284-1292.	1.5	24
17	Temperature-Dependent Exciton Recombination Dynamics of CdTe Nanocrystals. Journal of Physical Chemistry C, 2008, 112, 19263-19267.	1.5	21
18	Rapid preparation of highly luminescent CdTe nanocrystals in an ionic liquid via a microwave-assisted process. Journal of Materials Chemistry, 2011, 21, 8849.	6.7	20

Уознічикі Nonoguchi

#	Article	IF	CITATIONS
19	Ultrafast Carrier Transfer and Hot Carrier Dynamics in PbS–Au Hybrid Nanostructures. Journal of Physical Chemistry C, 2015, 119, 2113-2120.	1.5	19
20	Dispersion of Synthetic MoS ₂ Flakes and Their Spontaneous Adsorption on Singleâ€Walled Carbon Nanotubes. ChemPlusChem, 2015, 80, 1158-1163.	1.3	19
21	Thickness-dependent thermoelectric power factor of polymer-functionalized semiconducting carbon nanotube thin films. Science and Technology of Advanced Materials, 2018, 19, 581-587.	2.8	19
22	Electrochemical n-type doping of carbon nanotube films by using supramolecular electrolytes. Journal of Materials Chemistry A, 2018, 6, 21896-21900.	5.2	18
23	Crystallinity-Dependent Thermoelectric Properties of a Two-Dimensional Coordination Polymer: Ni3(2,3,6,7,10,11-hexaiminotriphenylene)2. Polymers, 2018, 10, 962.	2.0	16
24	Enhanced Thermoelectric Properties of Boron-Substituted Single-Walled Carbon Nanotube Films. ACS Applied Materials & Interfaces, 2019, 11, 7235-7241.	4.0	16
25	Surfactantâ€driven Amphoteric Doping of Carbon Nanotubes. Chemistry - an Asian Journal, 2018, 13, 3942-3946.	1.7	13
26	Air-stable and efficient electron doping of monolayer MoS ₂ by salt–crown ether treatment. Nanoscale, 2021, 13, 8784-8789.	2.8	12
27	Solid-state, individual dispersion of single-walled carbon nanotubes in ionic liquid-derived polymers and its impact on thermoelectric properties. RSC Advances, 2016, 6, 2489-2495.	1.7	11
28	Enhanced thermoelectric properties of semiconducting carbon nanotube films by UV/ozone treatment. Journal of Applied Physics, 2019, 126, .	1.1	11
29	Curved aromatic corannulene as an efficient enhancer for n-type thermoelectric single-walled carbon nanotubes. Journal of Materials Chemistry A, 2020, 8, 22969-22973.	5.2	11
30	Low-Temperature Observation of Photoinduced Electron Transfer from CdTe Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 11464-11468.	1.5	10
31	Flexible thermoelectric rubber polymer composites based on single-walled carbon nanotubes. Japanese Journal of Applied Physics, 2015, 54, 04DN03.	0.8	10
32	Rational primary structure design for boosting the thermoelectric properties of semiconducting carbon nanotube networks. Applied Physics Letters, 2021, 118, .	1.5	9
33	lonic Dopantâ€Encapsulating Singleâ€Walled Carbon Nanotube Films with Metalâ€Like Electrical Conductivity. Chemistry - an Asian Journal, 2020, 15, 590-593.	1.7	8
34	Low-voltage carbon nanotube complementary electronics using chemical doping to tune the threshold voltage. Applied Physics Express, 2021, 14, 045002.	1.1	8
35	SWNT Composites with Compositionally Tunable Prussian Blue Nanoparticles for Thermoelectric Coordination Programming Materials. Chemistry Letters, 2014, 43, 1254-1256.	0.7	7
36	Photopolymerization Sensitized by CdTe Nanocrystals in Ionic Liquid: Highly Efficient Photoinduced Electron Transfer. Japanese Journal of Applied Physics, 2008, 47, 1385-1388.	0.8	6

Уознічикі Nonoguchi

#	Article	IF	CITATIONS
37	A π-type Thermoelectric Generator Wrapped with Doped Single-walled Carbon Nanotube Sheets. MRS Advances, 2019, 4, 147-153.	0.5	6
38	Oligomerization of cadmium chalcogenide nanocrystals into CdTe-containing superlattice chains. Chemical Communications, 2011, 47, 11270.	2.2	5
39	Air-stable n-type tellurium nanowires coordinated by large organic salts. Synthetic Metals, 2017, 225, 93-97.	2.1	5
40	Governing Factors for Carbon Nanotube Dispersion in Organic Solvents Estimated by Machine Learning. Advanced Materials Interfaces, 2022, 9, .	1.9	5
41	Development of poly (methyl methacrylate)-supported transfer technique of single-wall carbon nanotube conductive films for flexible devices. Thin Solid Films, 2021, 736, 138904.	0.8	4
42	Low background estimation of metallic-to-semiconducting carbon nanotube ratio by using infrared spectroscopy. Synthetic Metals, 2021, 282, 116958.	2.1	3
43	Isolation of exfoliated boron nitride nanotubes via ethyl cellulose wrapping. Nano Select, 2021, 2, 1517-1524.	1.9	2
44	Crystallinity-limited thermoelectric properties of single-walled carbon nanotube sheets prepared using high-speed laminar flow dispersion. , 2022, 1, 147-152.		2
45	Carbon Nanotubes: Simple Salt-Coordinated n-Type Nanocarbon Materials Stable in Air (Adv. Funct.) Tj ETQq1 1	0.784314 7.8	rgBT /Over o
46	Carbon Nanotubes: Synergistic Impacts of Electrolyte Adsorption on the Thermoelectric Properties of Singleâ€Walled Carbon Nanotubes (Small 29/2017). Small, 2017, 13, .	5.2	1
47	åŠå°Žä½"ãƒŠãƒŽçµæ™¶ã®ç‰¹æ€§åˆ¶å¾¡ãïæ©Ÿèƒ½åŒ–. Electrochemistry, 2011, 79, 107-111.	0.6	0
48	Organic Thermoelectrics: Waterâ€Processable, Airâ€Stable Organic Nanoparticle–Carbon Nanotube Nanocomposites Exhibiting nâ€Type Thermoelectric Properties (Small 11/2017). Small, 2017, 13, .	5.2	0
49	Supramolecular Carbon Nanotube Films Adaptive to Thermoelectrics. Journal of Physics: Conference Series, 2018, 1052, 012132.	0.3	0
50	Thermoelectric Transport in Doped Carbon Nanotube Films. , 2018, , .		0
51	Thermoelectric materials and devices based on carbon nanotubes. , 2021, , 367-373.		0
52	Tuning the Thermoelectric Properties of Carbon Nanotube Films By Molecular Doping. ECS Meeting Abstracts, 2018, , .	0.0	0
53	Recent progress in thermoelectric materials based on single-wall carbon nanotubes. Tanso, 2020, 2020, 2020, 175-184.	0.1	0
54	Governing Factors for Carbon Nanotube Dispersion in Organic Solvents Estimated by Machine Learning (Adv. Mater. Interfaces 7/2022). Advanced Materials Interfaces, 2022, 9, .	1.9	0