Valeria Arrighi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4428466/publications.pdf Version: 2024-02-01

VALEDIA ADDICHL

#	Article	IF	CITATIONS
1	The glass transition and interfacial layer in styrene-butadiene rubber containing silica nanofiller. Polymer, 2003, 44, 6259-6266.	1.8	245
2	Quasielastic neutron scattering characterization of the relaxation processes in a room temperature ionic liquid. Journal of Chemical Physics, 2003, 119, 8549-8557.	1.2	122
3	Conformation of Cyclics and Linear Chain Polymers in Bulk by SANS. Macromolecules, 2004, 37, 8057-8065.	2.2	117
4	Electrochemical synthesis of ammonia based on a carbonate-oxide composite electrolyte. Solid State Ionics, 2011, 182, 133-138.	1.3	84
5	Local dynamics of poly(dimethyl siloxane) in the presence of reinforcing filler particles. Polymer, 1998, 39, 6369-6376.	1.8	83
6	Temperature Dependence of the Primary Relaxation in 1-Hexyl-3-methylimidazolium bis{(trifluoromethyl)sulfonyl}imide. Journal of Physical Chemistry B, 2009, 113, 8469-8474.	1.2	76
7	Polymer-Supported Photosensitizers for Oxidative Organic Transformations in Flow and under Visible Light Irradiation. ACS Catalysis, 2017, 7, 4602-4612.	5.5	70
8	Observation of Local Order in Poly(di-n-alkyl itaconate)s. Macromolecules, 2000, 33, 4989-4991.	2.2	57
9	Restricted dynamics in polymer-filler systems. Physica B: Condensed Matter, 2001, 301, 110-114.	1.3	54
10	Rotation of Methyl Side Groups in Polymers: A Fourier Transform Approach to Quasielastic Neutron Scattering. 1. Homopolymers. Macromolecules, 1995, 28, 2745-2753.	2.2	52
11	BODIPY-based conjugated microporous polymers as reusable heterogeneous photosensitisers in a photochemical flow reactor. Polymer Chemistry, 2016, 7, 6662-6670.	1.9	51
12	Photoactive and metal-free polyamide-based polymers for water and wastewater treatment under visible light irradiation. Applied Catalysis B: Environmental, 2016, 193, 226-233.	10.8	46
13	A small-angle neutron scattering study of a semiflexible main-chain liquid crystalline copolyester. Macromolecules, 1992, 25, 5297-5305.	2.2	43
14	Microwave and thermal curing of an epoxy resin for microelectronic applications. Thermochimica Acta, 2015, 616, 100-109.	1.2	40
15	Enthalpy relaxation and free volume changes in aged styrene copolymers containing a hydrogen bonding co-monomer. Journal of Materials Science, 2005, 40, 1869-1881.	1.7	36
16	Segmental Dynamics of Atactic Polypropylene As Revealed by Molecular Simulations and Quasielastic Neutron Scattering. Macromolecules, 2002, 35, 7110-7124.	2.2	35
17	On the difference in scattering behavior of cyclic and linear polymers in bulk. Journal of Chemical Physics, 2005, 122, 064904.	1.2	34
18	Dynamic heterogeneity in polymer electrolytes. Comparison between QENS data and MD simulations. Physica B: Condensed Matter, 2001, 301, 163-167.	1.3	33

#	Article	IF	CITATIONS
19	A Unified Picture of the Local Dynamics of Poly(dimethylsiloxane) across the Melting Point. Macromolecules, 2003, 36, 8738-8748.	2.2	33
20	Properties of partially denatured whey protein products: Formation and characterisation of structure. Food Hydrocolloids, 2016, 52, 95-105.	5.6	31
21	Deuterium NMR investigation of a new class of macrocyclic columnar liquid crystal. Liquid Crystals, 1991, 9, 277-284.	0.9	29
22	New polymeric materials for paper and textiles conservation. II. Grafting polymerization of ethyl acrylate/methyl methacrylate copolymers onto linen and cotton. Journal of Applied Polymer Science, 2007, 103, 90-99.	1.3	29
23	An organic silver complex conductive ink using both decomposition and self-reduction mechanisms in film formation. Journal of Materials Science: Materials in Electronics, 2018, 29, 2771-2783.	1.1	28
24	Dielectric Relaxations in Poly(di-n-alkyl itaconate)s. Macromolecules, 2004, 37, 6210-6218.	2.2	27
25	Effect of tacticity on the local dynamics of polypropylene melts. Journal of Chemical Physics, 2003, 119, 1271-1278.	1.2	26
26	Properties of partially denatured whey protein products 2: Solution flow properties. Food Hydrocolloids, 2016, 56, 218-226.	5.6	25
27	New polymeric materials for paper and textile conservation. I. Synthesis and characterization of acrylic copolymers. Journal of Applied Polymer Science, 2005, 98, 1157-1164.	1.3	24
28	Effect of humic substances aggregation on the determination of fluoride in water using an ion selective electrode. Chemosphere, 2016, 159, 66-71.	4.2	24
29	Rotation of Methyl Side Groups in Polymers: A Fourier Transform Approach to Quasielastic Neutron Scattering. 2. Polymer Blends. Macromolecules, 1995, 28, 4622-4630.	2.2	22
30	Side group rotations in amorphous polymers. Physica B: Condensed Matter, 1996, 226, 1-9.	1.3	22
31	Fine Structure and Optical Properties of Cholesteric Films Prepared from Cellulose 4-Methylphenyl Urethane/N-Vinyl Pyrrolidinone Solutions. Macromolecules, 2002, 35, 7354-7360.	2.2	20
32	New Interpretation of Local Dynamics of Poly(Dimethyl Siloxane) Observed by Quasielastic Neutron Scattering. Physical Review Letters, 2003, 90, 058301.	2.9	19
33	Synthesis and cellular compatibility of multi-block biodegradable poly(ε-caprolactone)-based polyurethanes. Journal of Materials Chemistry B, 2013, 1, 2590.	2.9	19
34	Microstructure and electrical property of copper films on a flexible substrate formed by an organic ink with 9.6Â% of Cu content. Journal of Materials Science: Materials in Electronics, 2015, 26, 8973-8982.	1.1	19
35	Local dynamics of atactic polypropylene across the glass transition. Physica B: Condensed Matter, 2001, 301, 35-43.	1.3	18
36	Silver Oxalate Ink with Low Sintering Temperature and Good Electrical Property. Journal of Electronic Materials, 2018, 47, 2824-2835.	1.0	18

#	Article	IF	CITATIONS
37	Properties of partially denatured whey protein products: Viscoelastic properties. Food Hydrocolloids, 2018, 80, 298-308.	5.6	18
38	Complex Dynamics in Polyisobutylene Melts. Macromolecules, 2002, 35, 7039-7043.	2.2	16
39	The stretched-exponential approximation to the dynamic structure factor in non-entangled polymer melts. Physical Chemistry Chemical Physics, 2002, 4, 3734-3742.	1.3	16
40	Thermal characterisation of cellulose based materials. Journal of Thermal Analysis and Calorimetry, 2005, 80, 369-373.	2.0	16
41	Efficient defluoridation of water by Monetite nanorods. Adsorption, 2018, 24, 135-145.	1.4	16
42	Effects of amine types on the properties of silver oxalate ink and the associated film morphology. Journal of Materials Science: Materials in Electronics, 2018, 29, 20895-20906.	1.1	16
43	Miscibility of polymer blends of poly(styrene-co-4-hydroxystyrene) with bisphenol-A polycarbonate. Journal of Applied Polymer Science, 1999, 74, 639-646.	1.3	14
44	Interpolymer complexation in hydrolysed poly(styrene-co-maleic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 462 Td (a	nhydride)/ 2.6	poly(styrene
45	Effect of Chain Length and Topological Constraints on Segmental Relaxation in Cyclic PDMS. Macromolecules, 2018, 51, 7209-7223.	2.2	14
46	Phase behaviour and orientational order of a main-chain nematic polyester: a combined SANS and NMR study. European Polymer Journal, 1993, 29, 175-181.	2.6	13
47	Molecular dynamics of a main-chain liquid crystalline polyester below the crystalline to nematic phase transition. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 1605-1612.	1.7	13
48	Lyotropic liquid crystalline cellulose derivatives in blends and molecular composites. Polymer, 2001, 42, 9657-9663.	1.8	13
49	Local Effects of Ring Topology Observed in Polymer Conformation and Dynamics by Neutron Scattering—A Review. Polymers, 2020, 12, 1884.	2.0	13
50	Conformation of cyclic and linear polydimethylsiloxane in the melt: a small-angle neutron-scattering study. Applied Physics A: Materials Science and Processing, 2002, 74, s469-s471.	1.1	12
51	Local Dynamics of Polyethylene and Its Oligomers:Â A Molecular Dynamics Interpretation of the Incoherent Dynamic Structure Factor. Macromolecules, 2003, 36, 8864-8875.	2.2	12

52	Quasielastic neutron scattering measurements of fast process and methyl group dynamics in glassy poly(vinyl acetate). Chemical Physics, 2006, 328, 53-63.	0.9	12
53	One step synthesis of a hybrid Ag/rGO conductive ink using a complexation–covalent bonding based approach. Journal of Materials Science: Materials in Electronics, 2017, 28, 8218-8230.	1.1	12
54	One step preparation of copper–silver self-catalyzed hybrid conductive ink with reduced sintering temperature for flexible electronics. Journal of Materials Science: Materials in Electronics, 2019, 30, 11607-11618.	1.1	12

#	Article	IF	CITATIONS
55	QENS investigation of filled rubbers. Applied Physics A: Materials Science and Processing, 2002, 74, s490-s492.	1.1	11
56	Structural and dynamical characterization of melt PEO–salt mixtures. Physica A: Statistical Mechanics and Its Applications, 2002, 304, 308-313.	1.2	11
57	Physical ageing in poly(4-hydroxy styrene)/poly(vinyl methyl ether) blends. Polymer International, 2006, 55, 749-756.	1.6	11
58	Miscibility Study of Stereoregular Poly(methyl methacrylate) Blends. Experimental Determination of Phase Diagrams and Predictions. Macromolecules, 2007, 40, 1667-1674.	2.2	11
59	Interpolymer complexation and thermal behaviour of poly(styrene-co-maleic acid)/poly(vinyl) Tj ETQq1 1 0.784	314 rgBT /0	Overlock 10 11
60	Segmental dynamics in polymer electrolytes. Applied Physics A: Materials Science and Processing, 2002, 74, s493-s495.	1.1	10
61	Enthalpy Relaxation in Poly(4-hydroxystyrene)/Poly(methyl methacrylate) Blends. Macromolecular Chemistry and Physics, 2005, 206, 767-776.	1.1	10
62	Characterization of a main-chain semiflexible liquid crystalline polymer: degree of orientational order. Polymer, 1996, 37, 141-148.	1.8	9
63	Temperature dependence of local chain dynamics in atactic polypropylene: a neutron spin-echo study. Physica B: Condensed Matter, 2001, 301, 157-162.	1.3	9
64	An Improved Algorithm for the Fourier Integral of the KWW Function and Its Application to Neutron Scattering and Dielectric Data. Journal of Macromolecular Science - Physics, 2006, 45, 1065-1081.	0.4	9
65	Molar Mass Dependence of Polyethylene Chain Dynamics. A Quasi-Elastic Neutron Scattering Investigation. Macromolecules, 2013, 46, 216-225.	2.2	9
66	Physical Aging of Polymer Blends. , 2014, , 1357-1394.		9
67	Phase behaviour of SMMA and SAN blends using Flory's equation of state theory. Polymer, 2002, 43, 6661-6667.	1.8	8
68	Fast and Slow Dynamics of Isotactic Polypropylene Melts. Macromolecules, 2008, 41, 1560-1564.	2.2	8
69	Anharmonic Behavior in the Multisubunit Protein Apoferritin as Revealed by Quasi-Elastic Neutron Scattering. Journal of Physical Chemistry B, 2008, 112, 10873-10878.	1.2	8
70	Temperature dependence of the segmental dynamics in polyisobutylene melts. Journal of Non-Crystalline Solids, 2002, 307-310, 654-657.	1.5	7
71	Molecular dynamics of main-chain liquid crystalline polymers. Physica B: Condensed Matter, 1999, 266, 1-12.	1.3	6
72	Lyotropic liquid crystalline cellulose derivatives in blends and molecular composites. Macromolecular Symposia, 2000, 152, 107-116.	0.4	6

#	Article	IF	CITATIONS
73	Structural investigation of polymers by neutron scattering. Plastics, Rubber and Composites, 2004, 33, 313-330.	0.9	6
74	Nanophase-separated regions and side-chain relaxation in dialkyl itaconate copolymers. Journal of Materials Chemistry, 2004, 14, 3306.	6.7	6
75	QENS from polymer aggregates in supercritical CO2. Physica B: Condensed Matter, 2000, 276-278, 386-387.	1.3	5
76	Order in amorphous di-n-alkyl itaconate polymers, copolymers, and blends. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 4000-4016.	2.4	5
77	Miscibility of blends of bisphenolâ€Aâ€polycarbonate and poly(styreneâ€ <i>co</i> â€acrylonitrileâ€ <i>co</i> â€hydroxystyrene) terpolymer. Journal of Applied Polymer Science, 2007, 106, 944-949.	1.3	5
78	Using Short Videos To Supplement Lectures on Reaction Mechanisms, Organic Spectroscopy, and Polymer Chemistry. ACS Symposium Series, 2012, , 209-224.	0.5	5
79	Dynamic studies of poly(di-n-alkyl itaconate)s. Applied Physics A: Materials Science and Processing, 2002, 74, s466-s468.	1.1	4
80	Kinetics of phase separation of poly(styrene-co-methyl methacrylate) and poly(styrene-co-acrylonitrile) blends. Polymer International, 2004, 53, 1686-1692.	1.6	4
81	Order in poly(di-n-alkyl itaconate)s revealed by X-ray scattering experiments. Nuclear Instruments & Methods in Physics Research B, 2003, 200, 411-415.	0.6	3
82	The dynamic structure factor in non-entangled polymer melts – theoretical results for real chains and the stretched exponential approximation. Chemical Physics, 2003, 287, 391-398.	0.9	3
83	Quasielastic neutron scattering study of poly(dimethyl siloxane) at high pressure. Physical Chemistry Chemical Physics, 1999, 1, 137-141.	1.3	2
84	Short-range order in blends of polycarbonates with polystyrenes. Physica B: Condensed Matter, 2000, 276-278, 849-851.	1.3	2
85	QENS from polymeric micelles in supercritical CO[sub 2]. AIP Conference Proceedings, 2000, , .	0.3	2
86	Ester methyl group dynamics in the poly(methyl methacrylate) stereocomplex: a neutron scattering study Macromolecular Symposia, 2001, 166, 269-276.	0.4	2
87	Continuum lumping modelling for step growth polymerisation mechanism. Chemical Engineering Research and Design, 2012, 90, 2287-2292.	2.7	2
88	The Effect of the Isomeric Chlorine Substitutions on the Honeycomb-Patterned Films of Poly(x-chlorostyrene)s/Polystyrene Blends and Copolymers via Static Breath Figure Technique. Materials, 2019, 12, 167.	1.3	2
89	SANS studies of solutions and molecular composites prepared from cellulose tricarbanilate. Applied Physics A: Materials Science and Processing, 2002, 74, s472-s474.	1.1	1
90	Toward a Universal Approach To Enable Transfer of Equilibrium Constants in Hydrogen-Bonded Blends. Macromolecules, 2008, 41, 3769-3771.	2.2	1

#	Article	IF	CITATIONS
91	Neutron scattering as a tool for observing mixing and demixing in a polymer blend. Neutron News, 1994, 5, 15-20.	0.1	0
92	The dynamic structure factor in non-entangled polymer melts – theoretical results for real chains and the stretched exponential approximation. Chemical Physics, 2003, 292, 347-354.	0.9	0