
Nico Lachmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4428386/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Continuous human iPSC-macrophage mass production by suspension culture in stirred tank bioreactors. Nature Protocols, 2022, 17, 513-539.	5.5	28
2	Ex Vivo Generation of CAR Macrophages from Hematopoietic Stem and Progenitor Cells for Use in Cancer Therapy. Cells, 2022, 11, 994.	1.8	18
3	Generation of Human iPSC from Small Volume Peripheral Blood Samples. Methods in Molecular Biology, 2022, 2429, 27-39.	0.4	0
4	Polarization of human iPSC-derived macrophages directs their immunological response to secondary pro-inflammatory stimuli. Journal of Immunology and Regenerative Medicine, 2022, , 100061.	0.2	0
5	Targeted biallelic integration of an inducible Caspase 9 suicide gene in iPSCs for safer therapies. Molecular Therapy - Methods and Clinical Development, 2022, 26, 84-94.	1.8	6
6	ISG15 deficiency features a complex cellular phenotype that responds to treatment with itaconate and derivatives. Clinical and Translational Medicine, 2022, 12, .	1.7	20
7	A 3D iPSC-differentiation model identifies interleukin-3 as a regulator of early human hematopoietic specification. Haematologica, 2021, 106, 1354-1367.	1.7	16
8	From macrophage biology to macrophage-based cellular immunotherapies. Gene Therapy, 2021, 28, 473-476.	2.3	12
9	Restored Macrophage Function Ameliorates Disease Pathophysiology in a Mouse Model for IL10 Receptor-deficient Very Early Onset Inflammatory Bowel Disease. Journal of Crohn's and Colitis, 2021, 15, 1588-1595.	0.6	10
10	Beyond "Big Eaters†The Versatile Role of Alveolar Macrophages in Health and Disease. International Journal of Molecular Sciences, 2021, 22, 3308.	1.8	21
11	Genetic Correction of IL-10RB Deficiency Reconstitutes Anti-Inflammatory Regulation in iPSC-Derived Macrophages. Journal of Personalized Medicine, 2021, 11, 221.	1.1	5
12	Rescue from Pseudomonas aeruginosa Airway Infection via Stem Cell Transplantation. Molecular Therapy, 2021, 29, 1324-1334.	3.7	6
13	iPSC modeling of stage-specific leukemogenesis reveals BAALC as a key oncogene in severe congenital neutropenia. Cell Stem Cell, 2021, 28, 906-922.e6.	5.2	13
14	Efficient Genetic Safety Switches for Future Application of iPSC-Derived Cell Transplants. Journal of Personalized Medicine, 2021, 11, 565.	1.1	11
15	Impaired respiratory burst contributes to infections in PKCδ-deficient patients. Journal of Experimental Medicine, 2021, 218, .	4.2	23
16	Pulmonary transplantation of alpha-1 antitrypsin (AAT)-transgenic macrophages provides a source of functional human AAT in vivo. Gene Therapy, 2021, 28, 477-493.	2.3	5
17	In Vivo Lentiviral Gene Delivery of HLA-DR and Vaccination of Humanized Mice for Improving the Human T and B Cell Immune Reconstitution. Biomedicines, 2021, 9, 961.	1.4	3
18	Myeloid cellâ€based delivery of IFNâ€Î³ reprograms the leukemia microenvironment and induces antiâ€tumoral immune responses. EMBO Molecular Medicine, 2021, 13, e13598.	3.3	13

#	Article	IF	CITATIONS
19	CARs and beyond: tailoring macrophage-based cell therapeutics to combat solid malignancies. , 2021, 9, e002741.		18
20	Human iPSC-derived macrophages for efficient Staphylococcus aureus clearance in a murine pulmonary infection model. Blood Advances, 2021, 5, 5190-5201.	2.5	8
21	Effective hematopoietic stem cell-based gene therapy in a murine model of hereditary pulmonary alveolar proteinosis. Haematologica, 2020, 105, 1147-1157.	1.7	7
22	Modeling MyD88 Deficiency In Vitro Provides New Insights in Its Function. Frontiers in Immunology, 2020, 11, 608802.	2.2	4
23	The Immune-Modulatory Properties of iPSC-Derived Antigen-Presenting Cells. Transfusion Medicine and Hemotherapy, 2020, 47, 444-453.	0.7	11
24	Human Lentiviral Gene Therapy Restores the Cellular Phenotype of Autosomal Recessive Complete IFN-γR1 Deficiency. Molecular Therapy - Methods and Clinical Development, 2020, 17, 785-795.	1.8	10
25	Generation of two hiPSC lines (MHHi016-A, MHHi016-B) from a primary ciliary dyskinesia patient carrying a homozygous 5Âbp duplication (c.248_252dup (p.Gly85Cysfs*11)) in exon 1 of the CCNO gene. Stem Cell Research, 2020, 46, 101850.	0.3	4
26	Generation of two human induced pluripotent stem cell lines (MHHi017-A, MHHi017-B) from a patient with primary ciliary dyskinesia carrying a homozygous mutation (c.7915CA>AT [p.Arg2639*]) in the DNAH5 gene. Stem Cell Research, 2020, 46, 101848.	0.3	4
27	Patient iPSC-Derived Macrophages to Study Inborn Errors of the IFN-Î ³ Responsive Pathway. Cells, 2020, 9, 483.	1.8	16
28	Lentiviral gene therapy and vitamin B3 treatment enable granulocytic differentiation of G6PC3-deficient induced pluripotent stem cells. Gene Therapy, 2020, 27, 297-306.	2.3	8
29	Generation of three induced pluripotent stem cell lines (MHHi012-A, MHHi013-A, MHHi014-A) from a family with Loeys-Dietz syndrome carrying a heterozygous p.M253I (c.759G>A) mutation in the TGFBR1 gene. Stem Cell Research, 2020, 43, 101707.	0.3	4
30	Generation of an induced pluripotent stem cell line (MHHi018-A) from a patient with Cystic Fibrosis carrying p.Asn1303Lys (N1303K) mutation. Stem Cell Research, 2020, 44, 101744.	0.3	5
31	Targeted Integration of Inducible Caspase-9 in Human iPSCs Allows Efficient in vitro Clearance of iPSCs and iPSC-Macrophages. International Journal of Molecular Sciences, 2020, 21, 2481.	1.8	12
32	Human STAT1 gain-of-function iPSC line from a patient suffering from chronic mucocutaneous candidiasis. Stem Cell Research, 2020, 43, 101713.	0.3	9
33	Long-Term Safety and Efficacy of Gene-Pulmonary Macrophage Transplantation Therapy of PAP in Csf2raâ^'/â^' Mice. Molecular Therapy, 2019, 27, 1597-1611.	3.7	21
34	Enhanced Ex Vivo Generation of Erythroid Cells from Human Induced Pluripotent Stem Cells in a Simplified Cell Culture System with Low Cytokine Support. Stem Cells and Development, 2019, 28, 1540-1551.	1.1	45
35	New Drugs for an Old Foe: Mycobacterium tuberculosis Meets PSC-Derived Macrophages. Stem Cell Reports, 2019, 13, 957-959.	2.3	1
36	Concise Review: Towards the Clinical Translation of Induced Pluripotent Stem Cell-Derived Blood Cells— <i>Ready for Take-Off</i> . Stem Cells Translational Medicine, 2019, 8, 332-339.	1.6	31

#	Article	IF	CITATIONS
37	Human iPSC-based model of severe congenital neutropenia reveals elevated UPR and DNA damage in CD34+ cells preceding leukemic transformation. Experimental Hematology, 2019, 71, 51-60.	0.2	16
38	Pulmonary Transplantation of Human Induced Pluripotent Stem Cell–derived Macrophages Ameliorates Pulmonary Alveolar Proteinosis. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 350-360.	2.5	57
39	Impaired IFNÎ ³ -Signaling and Mycobacterial Clearance in IFNÎ ³ R1-Deficient Human iPSC-Derived Macrophages. Stem Cell Reports, 2018, 10, 7-16.	2.3	25
40	Hematopoietic stem cell gene therapy for IFNÎ ³ R1 deficiency protects mice from mycobacterial infections. Blood, 2018, 131, 533-545.	0.6	19
41	An immune cell spray (ICS) formulation allows for the delivery of functional monocyte/macrophages. Scientific Reports, 2018, 8, 16281.	1.6	7
42	Bioreactor-based mass production of human iPSC-derived macrophages enables immunotherapies against bacterial airway infections. Nature Communications, 2018, 9, 5088.	5.8	105
43	iPSC-Derived Macrophages Effectively Treat Pulmonary Alveolar Proteinosis in Csf2rb-Deficient Mice. Stem Cell Reports, 2018, 11, 696-710.	2.3	40
44	The CpG-sites of the CBX3 ubiquitous chromatin opening element are critical structural determinants for the anti-silencing function. Scientific Reports, 2017, 7, 7919.	1.6	8
45	Function and Safety of Lentivirus-Mediated Gene Transfer for <i>CSF2RA</i> -Deficiency. Human Gene Therapy Methods, 2017, 28, 318-329.	2.1	16
46	Ex vivo Generation of Genetically Modified Macrophages from Human Induced Pluripotent Stem Cells. Transfusion Medicine and Hemotherapy, 2017, 44, 135-142.	0.7	15
47	TALEN-mediated functional correction of human iPSC-derived macrophages in context of hereditary pulmonary alveolar proteinosis. Scientific Reports, 2017, 7, 15195.	1.6	22
48	Lung surfactant metabolism: early in life, early in disease and target in cell therapy. Cell and Tissue Research, 2017, 367, 721-735.	1.5	50
49	Gene correction of HAX1 reversed Kostmann disease phenotype in patient-specific induced pluripotent stem cells. Blood Advances, 2017, 1, 903-914.	2.5	18
50	Generation of HLA-Universal iPSC-Derived Megakaryocytes and Platelets for Survival Under Refractoriness Conditions. Molecular Medicine, 2016, 22, 274-285.	1.9	74
51	Murine iPSC-Derived Macrophages as a Tool for Disease Modeling of Hereditary Pulmonary Alveolar Proteinosis due to Csf2rb Deficiency. Stem Cell Reports, 2016, 7, 292-305.	2.3	23
52	MicroRNA-Based Therapy of GATA2-Deficient Vascular Disease. Circulation, 2016, 134, 1973-1990.	1.6	46
53	Monocyte/macrophage lineage commitment and distribution are affected by the lack of regulatory TÂcells in scurfy mice. European Journal of Immunology, 2016, 46, 1656-1668.	1.6	17
54	Lost in translation: pluripotent stem cellâ€derived hematopoiesis. EMBO Molecular Medicine, 2015, 7, 1388-1402.	3.3	76

#	Article	IF	CITATIONS
55	Chemoprotection of murine hematopoietic cells by combined gene transfer of cytidine deaminase (CDD) and multidrug resistance 1 gene (MDR1). Journal of Experimental and Clinical Cancer Research, 2015, 34, 148.	3.5	5
56	Deoxycytidine-kinase knockdown as a novel myeloprotective strategy in the context of fludarabine, cytarabine or cladribine therapy. Leukemia, 2015, 29, 2266-2269.	3.3	7
57	Large-Scale Hematopoietic Differentiation of Human Induced Pluripotent Stem Cells Provides Granulocytes or Macrophages for Cell Replacement Therapies. Stem Cell Reports, 2015, 4, 282-296.	2.3	173
58	A minimal ubiquitous chromatin opening element (UCOE) effectively prevents silencing of juxtaposed heterologous promoters by epigenetic remodeling in multipotent and pluripotent stem cells. Nucleic Acids Research, 2015, 43, 1577-1592.	6.5	70
59	Tightly regulated â€~all-in-one' lentiviral vectors for protection of human hematopoietic cells from anticancer chemotherapy. Gene Therapy, 2015, 22, 883-892.	2.3	9
60	TALEN-mediated functional correction of X-linked chronic granulomatous disease in patient-derived induced pluripotent stem cells. Biomaterials, 2015, 69, 191-200.	5.7	76
61	Gene Correction of Human Induced Pluripotent Stem Cells Repairs the Cellular Phenotype in Pulmonary Alveolar Proteinosis. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 167-182.	2.5	85
62	Cytidine Deaminase in Myeloprotective Gene Therapy. , 2014, , 423-440.		0
63	Pulmonary transplantation of macrophage progenitors as effective and long-lasting therapy for hereditary pulmonary alveolar proteinosis. Science Translational Medicine, 2014, 6, 250ra113.	5.8	106
64	Pulmonary macrophage transplantation therapy. Nature, 2014, 514, 450-454.	13.7	249
65	Promoter and lineage independent anti-silencing activity of the A2 ubiquitous chromatin opening element for optimized human pluripotent stem cell-based gene therapy. Biomaterials, 2014, 35, 1531-1542.	5.7	42
66	Lentiviral MGMTP140K-mediated inÂvivo selection employing a ubiquitous chromatin opening element (A2UCOE) linked to a cellular promoter. Biomaterials, 2014, 35, 7204-7213.	5.7	12
67	IL-3 Specifies Early Hematopoietic Development from Human iPSCs and Synergizes with M-CSF and G-CSF on Myeloid Differentiation. Blood, 2014, 124, 4308-4308.	0.6	Ο
68	Myeloprotection by Cytidine Deaminase Gene Transfer in Antileukemic Therapy. Neoplasia, 2013, 15, 239-248.	2.3	10
69	Efficient in vivo regulation of cytidine deaminase expression in the haematopoietic system using a doxycycline-inducible lentiviral vector system. Gene Therapy, 2013, 20, 298-307.	2.3	17
70	A ubiquitous chromatin opening element prevents transgene silencing in pluripotent stem cells and their differentiated progeny. Stem Cells, 2013, 31, 488-499.	1.4	70
71	MicroRNA-150-regulated vectors allow lymphocyte-sparing transgene expression in hematopoietic gene therapy. Gene Therapy, 2012, 19, 915-924.	2.3	17
72	In vivo enrichment of cytidine deaminase gene-modified hematopoietic cells by prolonged cytosine-arabinoside application. Cytotherapy, 2012, 14, 451-460.	0.3	10

#	Article	IF	CITATIONS
73	Efficient Hematopoietic Redifferentiation of Induced Pluripotent Stem Cells Derived from Primitive Murine Bone Marrow Cells. Stem Cells and Development, 2012, 21, 689-701.	1.1	28
74	Clonal Inventory Screens Uncover Monoclonality Following Serial Transplantation ofMGMTP140K-Transduced Stem Cells and Dose-Intense Chemotherapy. Human Gene Therapy, 2011, 22, 697-710.	1.4	17
75	The Ubiquitous Chromatin Opening Element (UCOE) Enhances Lentiviral Cytidine Deaminase (CDD) Expression and Drug Resistance During Hematopoietic Differentiation of Murine Induced Pluripotent Stem Cells (iPSCs),. Blood, 2011, 118, 4179-4179.	0.6	3
76	Doxycycline Regulatable Expression of Cytidine Deaminase Mediates Myeloprotection and Avoids Lymphotoxicity in a Murine Transplant Model. Blood, 2011, 118, 2054-2054.	0.6	0