Andrea C Burrows

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/442837/publications.pdf

Version: 2024-02-01

41 papers

238 citations

8 h-index 13 g-index

44 all docs

44 docs citations

44 times ranked 145 citing authors

#	Article	IF	CITATIONS
1	Biodiesel and Integrated STEM: Vertical Alignment of High School Biology/Biochemistry and Chemistry. Journal of Chemical Education, 2014, 91, 1379-1389.	1.1	30
2	Integrated STEM: Focus on Informal Education and Community Collaboration through Engineering. Education Sciences, 2018, 8, 4.	1.4	30
3	PARTNERSHIPS: A SYSTEMIC STUDY OF TWO PROFESSIONAL DEVELOPMENTS WITH UNIVERSITY FACULTY AND K-12 TEACHERS OF SCIENCE, TECHNOLOGY, ENGINEERING, AND MATHEMATICS. Problems of Education in the 21st Century, 2015, 65, 28-38.	0.3	15
4	A Proposed Astronomy Learning Progression For Remote Telescope Observation. Journal of College Teaching and Learning, 2014, 11, 197.	0.8	13
5	Ants Go Marchingâ€"Integrating Computer Science into Teacher Professional Development with NetLogo. Education Sciences, 2019, 9, 66.	1.4	12
6	AUTHENTIC SCIENCE EXPERIENCES: PRE-COLLEGIATE SCIENCE EDUCATORS' SUCCESSES AND CHALLENGES DURING PROFESSIONAL DEVELOPMENT. Problems of Education in the 21st Century, 2016, 70, 59-73.	0.3	12
7	Secondary Science Preservice Teachers' Perceptions of Engineering: A Learner Analysis. Education Sciences, 2019, 9, 29.	1.4	11
8	TEACHING COMPUTER SCIENCE & ENGINEERING THROUGH ROBOTICS: SCIENCE & ART FORM. Problems of Education in the 21st Century, 2012, 47, 6-15.	0.3	11
9	Systematic Review of Outdoor Science Learning Activities with the Integration of Mobile Devices. International Journal of Mobile and Blended Learning, 2020, 12, 33-56.	0.5	9
10	Evidence of Science and Engineering Practices in Preservice Secondary Science Teachers' Instructional Planning. Journal of Science Education and Technology, 2018, 27, 536-549.	2.4	8
11	Authentic science experiences with STEM datasets: post-secondary results and potential gender influences. Research in Science and Technological Education, 2020, , 1-21.	1.4	8
12	Riding the wave: student researcher reflection on the action research process. Educational Action Research, 2012, 20, 291-312.	0.8	6
13	Integrated STEM for Teacher Professional Learning and Development: "l Need Time for Practice― Education Sciences, 2021, 11, 21.	1.4	6
14	Transcending disciplines: Engaging college students in interdisciplinary research, integrated STEM, and partnerships. Journal of Technology and Science Education, 2021, 11, 146.	0.5	6
15	Finding Spaces: Teacher Education Technology Competencies (TETCs). Education Sciences, 2021, 11, 733.	1.4	6
16	Integrated STEM and Partnerships: What to Do for More Effective Teams in Informal Settings. Education Sciences, 2022, 12, 58.	1.4	6
17	Experiencing action evaluation's cyclic process: partnering conflict, reflection, and action. Educational Action Research, 2016, 24, 460-478.	0.8	5
18	Mentoring partnerships in science education. Educational Action Research, 2017, 25, 630-649.	0.8	5

#	Article	IF	Citations
19	Computer science and engineering: utilizing action research and lesson study. Educational Action Research, 2019, 27, 631-646.	0.8	5
20	Secondary Science Preservice Teachers: Technology Integration in Methods and Residency. Journal of Science Teacher Education, 2021, 32, 578-600.	1.4	5
21	Inquiring Astronomy: Incorporating Student-Centered Pedagogical Techniques in an Introductory College Science Course. Journal of College Science Teaching, 2017, 046, .	0.5	5
22	Integrated Outreach: Increasing Engagement in Computer Science and Cybersecurity. Education Sciences, 2020, 10, 353.	1.4	4
23	PARTNERING SCIENCE AND ART: PRE-SERVICE TEACHERS' EXPERIENCES FOR USE IN PRE-COLLEGIATE CLASSROOMS. Problems of Education in the 21st Century, 2017, 75, 215-234.	0.3	4
24	ENHANCING PEDAGOGY WITH CONTEXT AND PARTNERSHIPS: SCIENCE IN HAND. Problems of Education in the 21st Century, 2013, 54, 7-13.	0.3	4
25	Computer Science beyond Coding: Partnering to Create Teacher Cybersecurity Microcredentials. Education Sciences, 2022, 12, 4.	1.4	3
26	Is classical mechanics a prerequisite for learning physics of the 20th century?. Physics Education, 2016, 51, 065022.	0.3	2
27	Teaching Bio-Inspired Engineering in K-12 Schools. , 2011, , .		1
28	Interactive Web Notebooks Using the Cloud to Enable CS in K-16+ Classrooms and PDs. , 0, , .		1
29	Enabling Advanced Topics in Computing and Engineering Through Authentic Inquiry: A Cybersecurity Case Study., 0,,.		1
30	IDENTIFYING IMPLEMENTATION CHALLENGES FOR A NEW COMPUTER SCIENCE CURRICULUM IN RURAL WESTERN REGIONS OF THE UNITED STATES. Problems of Education in the 21st Century, 2022, 80, 353-370.	0.3	1
31	Confusion Over Models: Exploring Discourse in a STEM Professional Development. SAGE Open, 2022, 12, 215824402210979.	0.8	1
32	STEPing to sustainability in a graduate K-12 partnership., 2009,,.		0
33	Project blob: Edible emulsions. , 2011, , .		O
34	Instructional Planning Modifications to Meet Social Distancing Requirements: Secondary and Post-Secondary Options. Education Sciences, 2021, 11, 217.	1.4	0
35	Arduinos and Games: K-12 Teachers Explore Computer Science (Evaluation). , 0, , .		0
36	Developing a Creative K-12 Manipulative: An ECECS Capstone. , 0, , .		0

#	Article	IF	CITATIONS
37	Building Collaboration and Securing Interest in Computer Science Education through Outreach Opportunities. , 0, , .		0
38	Constructing and Refining Computer Science Outreach Focused on Student Engagement. , 0, , .		0
39	Listening for Integrated STEM Discourse: Power and Positioning in a Teacher Professional Development Dataset Activity. Education Sciences, 2022, 12, 84.	1.4	0
40	Teaching Teachers to Think Like Engineers Using NetLogo. , 0, , .		0
41	"I'm Not Good at Math," She Said , 0, , .		0