Vladimir Aleshkin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4428067/publications.pdf Version: 2024-02-01

1,418	³⁹³⁹⁸²	414034 32
citations	h-index	g-index
195	195	889
docs citations	times ranked	citing authors
	citations 195	1,41819citationsh-index195195

#	Article	IF	CITATIONS
1	Terahertz surface plasmons in optically pumped graphene structures. Journal of Physics Condensed Matter, 2011, 23, 145302.	0.7	168
2	Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures. Journal of Applied Physics, 2009, 106, .	1.1	125
3	Injection terahertz laser using the resonant inter-layer radiative transitions in double-graphene-layer structure. Applied Physics Letters, 2013, 103, .	1.5	47
4	Cyclotron resonance and interband optical transitions in HgTe/CdTe(0 1 3) quantum well heterostructures. Semiconductor Science and Technology, 2011, 26, 125011.	1.0	43
5	Terahertz laser based on optically pumped graphene: Model and feasibility of realization. JETP Letters, 2009, 89, 63-67.	0.4	41
6	Study of lifetimes and photoconductivity relaxation in heterostructures with Hg x Cd1 â^' x Te/Cd y Hg1 âr' y Te quantum wells. Semiconductors, 2012, 46, 1362-1366.	0.2	34
7	Self-organization of germanium nanoislands obtained in silicon by molecular-beam epitaxy. JETP Letters, 1998, 67, 48-53.	0.4	32
8	Voltage-tunable terahertz and infrared photodetectors based on double-graphene-layer structures. Applied Physics Letters, 2014, 104, .	1.5	32
9	Exchange enhancement of the g factor in InAs/AISb heterostructures. Semiconductors, 2008, 42, 828-833.	0.2	31
10	Valence band energy spectrum of HgTe quantum wells with an inverted band structure. Physical Review B, 2017, 96, .	1.1	30
11	Difference mode generation in injection lasers. Semiconductors, 2001, 35, 1203-1207.	0.2	28
12	Terahertz spectroscopy of quantum-well narrow-bandgap HgTe/CdTe-based heterostructures. JETP Letters, 2010, 92, 756-761.	0.4	27
13	Monolithically integrated InGaAs/GaAs/AlGaAs quantum well laser grown by MOCVD on exact Ge/Si(001) substrate. Applied Physics Letters, 2016, 109, .	1.5	24
14	Radiative recombination in narrow gap HgTe/CdHgTe quantum well heterostructures for laser applications. Journal of Physics Condensed Matter, 2018, 30, 495301.	0.7	22
15	Surface-plasmons lasing in double-graphene-layer structures. Journal of Applied Physics, 2014, 115, 044511.	1.1	21
16	Negative terahertz conductivity and amplification of surface plasmons in graphene–black phosphorus injection laser heterostructures. Physical Review B, 2019, 100, .	1.1	21
17	Fundamental Limits to Far-Infrared Lasing in Auger-Suppressed HgCdTe Quantum Wells. ACS Photonics, 2020, 7, 98-104.	3.2	21
18	Graphene vertical cascade interband terahertz and infrared photodetectors. 2D Materials, 2015, 2, 025002.	2.0	20

#	Article	IF	CITATIONS
19	Temperature limitations for stimulated emission in 3–4 μm range due to threshold and non-threshold Auger recombination in HgTe/CdHgTe quantum wells. Applied Physics Letters, 2020, 117, 083103.	1.5	20
20	Shallow acceptors in strained Ge/Ge1â^'x Six heterostructures with quantum wells. Semiconductors, 2000, 34, 563-567.	0.2	19
21	High-field splitting of the cyclotron resonance absorption in strained <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>p</mml:mi><mml:mtext>-InGaAs</mml:mtext><mml:mo>/</mml:mo> wells. Physical Review B, 2009, 79</mml:mrow></mml:math 	<mml:mte></mml:mte>	xt> CaA s
22	Room-temperature intracavity difference-frequency generation in butt-joint diode lasers. Applied Physics Letters, 2008, 92, 021122.	1.5	18
23	Spectra of Persistent Photoconductivity in InAsâ^•AlSb Quantum-Well Heterostructures. Semiconductors, 2005, 39, 22.	0.2	17
24	HgCdTe-based quantum cascade lasers operating in the GaAs phonon Reststrahlen band predicted by the balance equation method. Optics Express, 2020, 28, 25371.	1.7	17
25	Cyclotron Resonance in Doped and Undoped InAsâ^•AlSb Heterostructures with Quantum Wells. Semiconductors, 2005, 39, 62.	0.2	16
26	Nonlinear mode mixing in dual-wavelength semiconductor lasers with tunnel junctions. Applied Physics Letters, 2007, 90, 171106.	1.5	16
27	Carrier Recombination, Longâ€Wavelength Photoluminescence, and Stimulated Emission in HgCdTe Quantum Well Heterostructures. Physica Status Solidi (B): Basic Research, 2019, 256, 1800546.	0.7	15
28	Impurity resonance states in semiconductors. Semiconductors, 2008, 42, 880-904.	0.2	14
29	Terahertz emission and photoconductivity in n-type GaAs/AlGaAs quantum wells: the role of resonant impurity states. Semiconductors, 2010, 44, 1394-1397.	0.2	14
30	Direct band Ge and Ge/InGaAs quantum wells in GaAs. Journal of Applied Physics, 2011, 109, .	1.1	13
31	Interband infrared photodetectors based on HgTe–CdHgTe quantum-well heterostructures. Optical Materials Express, 2018, 8, 1349.	1.6	13
32	Landau level spectroscopy of valence bands in HgTe quantum wells: effects of symmetry lowering. Journal of Physics Condensed Matter, 2019, 31, 145501.	0.7	13
33	Non-linear wave mixing in GaAs/InGaAs/InGaP butt-joint diode lasers. Journal of Modern Optics, 2005, 52, 2323-2330.	0.6	12
34	MOCVD Growth of InGaAs/GaAs/AlGaAs Laser Structures with Quantum Wells on Ge/Si Substrates. Crystals, 2018, 8, 311.	1.0	11
35	Auger recombination in narrow gap HgCdTe/CdHgTe quantum well heterostructures. Journal of Applied Physics, 2021, 129, .	1.1	11
36	Giant population inversion of hot electrons in GaAs/AlAs type heterostructures with quantum wells. JETP Letters, 1998, 68, 78-83.	0.4	10

#	Article	IF	CITATIONS
37	Electron and hole spectra and selection rules for optical transitions in Ge1â^'x Six/Ge heterostructures. Semiconductors, 1997, 31, 132-138.	0.2	9
38	Fano resonance study in impurity photocurrent spectra of bulk GaAs and GaAs quantum wells doped with shallow donors. Physical Review B, 2007, 75, .	1.1	9
39	Tunable source of terahertz radiation based on the difference-frequency generation in a GaP crystal. JETP Letters, 2008, 88, 787-789.	0.4	9
40	Mode structure in the far field radiation of a leaky-wave multiple quantum well laser. Quantum Electronics, 2012, 42, 931-933.	0.3	9
41	Magnetospectroscopy of double HgTe/CdHgTe quantum wells. Semiconductors, 2016, 50, 1532-1538.	0.2	9
42	Plasmon recombination in narrowgap HgTe quantum wells. Journal of Physics Communications, 2020, 4, 115012.	0.5	9
43	Terahertz Oscillator Based on Nonlinear Frequency Conversion in a Double Vertical Cavity. Semiconductors, 2005, 39, 113.	0.2	8
44	On the band spectrum in p-type HgTe/CdHgTe heterostructures and its transformation under temperature variation. Semiconductors, 2017, 51, 1531-1536.	0.2	8
45	Threshold energies of Auger recombination in HgTe/CdHgTe quantum well heterostructures with 30–70 meV bandgap. Journal of Physics Condensed Matter, 2019, 31, 425301.	0.7	8
46	Photoelectric properties of GaAs/InAs heterostructures with quantum dots. Semiconductors, 1997, 31, 941-946.	0.2	7
47	Determination of the density of states in quantum wells and quantum dot arrays by the capacitance-voltage method. Semiconductors, 1999, 33, 1133-1138.	0.2	7
48	Waveguide effect of GaAsSb quantum wells in a laser structure based on GaAs. Semiconductors, 2013, 47, 1475-1477.	0.2	7
49	Mid-IR stimulated emission in Hg(Cd)Te/CdHgTe quantum well structures up to 200 K due to suppressed Auger recombination. Laser Physics, 2021, 31, 015801.	0.6	7
50	Toward Peltier-cooled mid-infrared HgCdTe lasers: Analyzing the temperature quenching of stimulated emission at â^¼6 <i>1¼</i> m wavelength from HgCdTe quantum wells. Journal of Applied Physics 2021, 130, .	, 1.1	7
51	The Mode Competition, Instability, and Second Harmonic Generation in Dual-Frequency InGaAsâ^•GaAsâ^•InGaP Lasers. Semiconductors, 2005, 39, 156.	0.2	6
52	1.3 μm photoluminescence of Ge/GaAs multi-quantum-well structure. Journal of Applied Physics, 2014, 115, 043512.	1.1	6
53	Effect of Features of the Band Spectrum on the Characteristics of Stimulated Emission in Narrow-Gap Heterostructures with HgCdTe Quantum Wells. Semiconductors, 2018, 52, 1375-1379.	0.2	6
54	Infrared radiation from hot holes during spatial transport in selectively doped InGaAs/GaAs heterostructures with quantum wells. JETP Letters, 1996, 64, 520-524.	0.4	5

#	Article	IF	CITATIONS
55	Resonant states of shallow acceptors in uniaxially deformed germanium. Journal of Experimental and Theoretical Physics, 2001, 93, 1296-1301.	0.2	5
56	Inversion of the electron population in subbands of dimensional quantization with longitudinal transport in tunnel-coupled quantum wells. Semiconductors, 2002, 36, 685-690.	0.2	5
57	Terahertz oscillator with vertical radiation extraction. Technical Physics, 2004, 49, 592-597.	0.2	5
58	Nonlinear frequency conversion in a double vertical-cavity surface-emitting laser. Semiconductors, 2004, 38, 1350-1355.	0.2	5
59	Experimental study of nonlinear mode mixing in dual-wavelength semiconductor lasers. Laser Physics, 2007, 17, 684-687.	0.6	5
60	Guiding effect of quantum wells in semiconductor lasers. Quantum Electronics, 2013, 43, 401-406.	0.3	5
61	Efficiency of GalnAs/GaAs quantum-well lasers upon inhomogeneous excitation of quantum wells. Quantum Electronics, 2013, 43, 999-1002.	0.3	5
62	On the stimulated emission of InGaAs/GaAs/AlGaAs laser structures grown by MOCVD on exact and inclined Ge/Si(001) substrates. Semiconductors, 2017, 51, 663-666.	0.2	5
63	Peculiarities of growing InGaAs/GaAs/AlGaAs laser structures by MOCVD on Ge/Si substrates. Semiconductors, 2017, 51, 1527-1530.	0.2	5
64	Submonolayer InGaAs/GaAs Quantum Dots Grown by MOCVD. Semiconductors, 2019, 53, 1138-1142.	0.2	5
65	Spin-orbit splitting of the conduction band in HgTe quantum wells: Role of different mechanisms. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 110, 95-99.	1.3	5
66	Stimulated emission of plasmon-LO mode in narrow gap HgTe/CdHgTe quantum wells. Journal of Optics (United Kingdom), 2021, 23, 115001.	1.0	5
67	Far Infrared Emission and Absorption (Amplification) under Real Space Transfer and Population Inversion in Shallow Multi-Quantum-Wells. Physica Status Solidi (B): Basic Research, 1997, 204, 563-565.	0.7	4
68	On the impurity photoconductivity of uniaxially stressed p-Ge. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 680-682.	0.8	4
69	Blue-green radiation in GaAs-based quantum-well lasers. Semiconductors, 2004, 38, 352-354.	0.2	4
70	A multifrequency interband two-cascade laser. Semiconductors, 2007, 41, 1209-1213.	0.2	4
71	Intracavity terahertz difference-frequency generation in an InGaAs-quantum-well two-frequency InGaAsP/InP laser. Quantum Electronics, 2009, 39, 727-730.	0.3	4
72	Difference-frequency generation in a butt-join diode laser. Semiconductors, 2009, 43, 208-211.	0.2	4

#	Article	IF	CITATIONS
73	Leaky-wave semiconductor laser with improved energetic characteristics and very narrow dirrectional pattern. Quantum Electronics, 2010, 40, 855-857.	0.3	4
74	Picosecond photoluminescence dynamics in an InGaAs/GaAs quantum-well heterostructure. Semiconductors, 2012, 46, 917-920.	0.2	4
75	Stimulated emission from an InGaAs/GaAs/AlGaAs heterostructure grown on a Si substrate. JETP Letters, 2015, 100, 795-797.	0.4	4
76	Dynamics of the cascade capture of electrons by charged donors in GaAs and InP. Journal of Experimental and Theoretical Physics, 2016, 123, 284-291.	0.2	4
77	Technology of the production of laser diodes based on GaAs/InGaAs/AlGaAs structures grown on a Ge/Si substrate. Semiconductors, 2017, 51, 1477-1480.	0.2	4
78	Polarization-Sensitive Fourier-Transform Spectroscopy of HgTe/CdHgTe Quantum Wells in the Far Infrared Range in a Magnetic Field. JETP Letters, 2018, 108, 329-334.	0.4	4
79	Magnetooptics of HgTe/CdTe Quantum Wells with Giant Rashba Splitting in Magnetic Fields up to 34 T. Semiconductors, 2018, 52, 1386-1391.	0.2	4
80	Study of the Auger Recombination Energy Threshold in a Series of Waveguide Heterostructures with HgTe/Cd0.7Hg0.3Te QWs Near 14 μm. Semiconductors, 2019, 53, 1154-1157.	0.2	4
81	Investigation into Microwave Absorption in Semiconductors for Frequency-Multiplication Devices and Radiation-Output Control of Continuous and Pulsed Gyrotrons. Semiconductors, 2020, 54, 1069-1074.	0.2	4
82	Deep states in silicon δ-doped GaAs. Semiconductors, 1998, 32, 659-664.	0.2	3
83	The use of a scanning tunneling microscope (STM) for investigation of local photoconductivity of quantum-dimensional semiconductor structures. Technical Physics Letters, 2000, 26, 1-3.	0.2	3
84	Nonlinear mid-IR radiation in two-frequency semiconductor lasers with a corrugated waveguide. Technical Physics, 2004, 49, 1486-1490.	0.2	3
85	Fano resonances in the impurity photoexcitation spectra of semiconductors doped with shallow donors. Journal of Experimental and Theoretical Physics, 2005, 101, 708-716.	0.2	3
86	Oscillations at a difference frequency in the middle and far infrareds in GaP semiconductor waveguides. Technical Physics, 2006, 51, 1207-1209.	0.2	3
87	Picosecond kinetics of photoexcited carriers in gallium arsenide containing aluminum nanoclusters. Semiconductors, 2007, 41, 909-913.	0.2	3
88	Monte Carlo simulation of 2D TASER. Journal of Computational Electronics, 2007, 6, 45-48.	1.3	3
89	Fano resonance in the impurity photoconductivity spectrum of InP doped with shallow donors. Physics of the Solid State, 2008, 50, 1211-1214.	0.2	3
90	Fano resonances in the impurity photocurrent spectra of GaAs samples and an InGaAs/GaAsP quantum-well heterostructure doped with shallow acceptors. Journal of Experimental and Theoretical Physics, 2009, 109, 466-471.	0.2	3

#	Article	IF	CITATIONS
91	Simultaneous TE1 and TE2 mode lasing yielding dual-wavelength oscillation in a semiconductor laser with a tunnel junction. Semiconductors, 2011, 45, 641-645.	0.2	3
92	Anomalous characteristics of lasers with a large number of quantum wells. Technical Physics, 2011, 56, 1049-1052.	0.2	3
93	Structural and optical properties of GaAs-based heterostructures with Ge and Ge/InGaAs quantum wells. Semiconductors, 2013, 47, 636-640.	0.2	3
94	Dependence of the ground-state transition energy versus optical pumping in GaAsSb/InGaAs/GaAs heterostructures. Applied Physics Letters, 2014, 104, 021108.	1.5	3
95	Efficiency of vertical emission from a semiconductor laser waveguide with a diffraction grating. Semiconductors, 2014, 48, 89-94.	0.2	3
96	Observation of dynamics of impurity photoconductivity in n-GaAs caused by electron cooling. Semiconductors, 2015, 49, 113-117.	0.2	3
97	Stimulated emission in heterostructures with double InGaAs/GaAsSb/GaAs quantum wells, grown on GaAs and Ge/Si(001) substrates. Semiconductors, 2016, 50, 1435-1438.	0.2	3
98	On the Application of Strain-Compensating GaAsP Layers for the Growth of InGaAs/GaAs Quantum-Well Laser Heterostructures Emitting at Wavelengths above 1100 nm on Artificial Ge/Si Substrates. Semiconductors, 2018, 52, 1547-1550.	0.2	3
99	Lowering the Lasing Threshold by Doping in Mid-Infrared Lasers Based on HgCdTe with HgTe Quantum Wells. Semiconductors, 2018, 52, 1221-1224.	0.2	3
100	Anisotropy of the in-plane g -factor of electrons in HgTe quantum wells. Physical Review B, 2020, 101, .	1.1	3
101	Terahertz Emission from HgCdTe QWs under Long-Wavelength Optical Pumping. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41, 750-757.	1.2	3
102	Terahertz plasmons in doped HgTe quantum well heterostructures: dispersion, losses, and amplification. Applied Optics, 2021, 60, 8991.	0.9	3
103	Plasmon gain in HgTe/CdHgTe multi-quantum-well heterostructures. Journal of Optics (United) Tj ETQq1 1 0.784	314 rgBT , 1.0	Oyerlock 1
104	Population inversion between Γ subbands in quantum wells under the conditions of Γ-L intervalley transfer. Semiconductors, 2003, 37, 215-219.	0.2	2
105	Shallow-impurity-assisted transitions in the course of submillimeter magnetoabsorption of strained Ge/GeSi(111) quantum-well heterostructures. Physics of the Solid State, 2004, 46, 125-129.	0.2	2
106	Intersubband cyclotron resonance of holes in strained Ge/GeSi(111) heterostructures with germanium wide quantum wells and cyclotron resonance of 1L electrons in GeSi layers. Physics of the Solid State, 2004, 46, 130-137.	0.2	2
107	Impurity absorption of light involving resonant states of shallow donors in quantum wells. Journal of Experimental and Theoretical Physics, 2004, 98, 1174-1182.	0.2	2
108	Difference-frequency pulse generation in quantum well heterolasers. Laser Physics, 2007, 17, 688-694.	0.6	2

#	Article	IF	CITATIONS
109	Frequency shift in a system of two laser diodes. Semiconductors, 2007, 41, 1364-1368.	0.2	2
110	Generation of difference-frequency radiation in mid- and far-IR ranges by using subpicosecond and picosecond semiconductor lasers. Quantum Electronics, 2008, 38, 149-153.	0.3	2
111	Calculation of the parameters for the Fano resonance in the impurity photocurrent spectrum of semiconductors doped with hydrogen-like donors. Semiconductor Science and Technology, 2010, 25, 085005.	1.0	2
112	Long-wavelength shift and enhanced room temperature photoluminescence efficiency in GaAsSb/InGaAs/GaAs-based heterostructures emitting in the spectral range of 1.0–1.2 μm due to increased charge carrier's localization. Journal of Applied Physics, 2014, 116, 203102.	1.1	2
113	Experimental determination of the optimum number of quantum wells in multiwell heterolasers with radiation leakage into a substrate. Technical Physics Letters, 2014, 40, 432-434.	0.2	2
114	The waveguide effect of InGaAs quantum wells in a GaAs structure on Si substrate with Ge buffer layer. Technical Physics Letters, 2015, 41, 648-650.	0.2	2
115	On the cascade capture of electrons at charged dipoles in weakly compensated semiconductors. Semiconductors, 2017, 51, 1444-1448.	0.2	2
116	Effect of Cd content in barriers on the threshold energy of Auger recombination in waveguide structures with HgTe/CdxHg1-xTe quantum wells, emitting at a wavelength of 18 μm. Quantum Electronics, 2019, 49, 556-558.	0.3	2
117	Magnetoabsorption in HgCdTe/CdHgTe Quantum Wells in Tilted Magnetic Fields. JETP Letters, 2019, 109, 191-197.	0.4	2
118	Continuous-Wave Stimulated Emission in the 10–14-μm Range under Optical Excitation in HgCdTe/CdHgTe-QW Structures with Quasirelativistic Dispersion. Semiconductors, 2020, 54, 1371-1375.	0.2	2
119	Effect of antimony doping on the energy of optical transitions in n-Ge layers grown on Si (001) and Ge (001) substrates. Journal of Applied Physics, 2020, 127, 165701.	1.1	2
120	Polarization of in-plane photoluminescence from InAs/Ga(In)As quantum-well layers grown by metallorganic vapor-phase epitaxy. Semiconductors, 1998, 32, 1119-1124.	0.2	1
121	Shallow acceptors in strained multiquantum-well Ge/Ge1â^'x Six heterostructures. Semiconductors, 1998, 32, 1106-1110.	0.2	1
122	GaAsSb/GaAs quantum well growth by MOCVD hydride epitaxy with laser sputtering of antimony. JETP Letters, 1998, 68, 91-96.	0.4	1
123	Calculation of the States of Shallow Donors in Quantum Wells in a Magnetic Field Using Plane Wave Expansion. Semiconductors, 2005, 39, 54.	0.2	1
124	Negative Photoconductivity of Selectively Doped SiGeâ^•Si : B Heterostructures with a Two-Dimensional Hole Gas in the Middle-Infrared Range. Physics of the Solid State, 2005, 47, 46.	0.2	1
125	Terahertz generation via intracavity mixing in mode-locked dual-wavelength lasers. , 2007, , .		1
126	Optical band gap width in GaAs in megagauss magnetic fields. Physics of the Solid State, 2007, 49, 634-645.	0.2	1

#	Article	IF	CITATIONS
127	Efficient generation of the first waveguide mode in the InGaAs/GaAs/InGaP heterolaser. Semiconductors, 2008, 42, 354-357.	0.2	1
128	Generation of difference-frequency radiation in the far- and mid-IR ranges in a two-chip laser based on gallium arsenide on a germanium substrate. Quantum Electronics, 2008, 38, 855-858.	0.3	1
129	Simultaneous generation of TE 0 and TE 1 modes with different wavelengths in a semiconducting laser diode. Technical Physics, 2009, 54, 1711-1713.	0.2	1
130	Resonance Coulomb scattering by shallow donor impurities in GaAs and InP. Semiconductor Science and Technology, 2011, 26, 095003.	1.0	1
131	Theory of the Fano resonance in impurity excitation spectra of p-GaAs. Physics of the Solid State, 2011, 53, 1176-1185.	0.2	1
132	Exact calculation of shot noise suppression in resonant diodes under coherent tunneling. Physical Review B, 2012, 86, .	1.1	1
133	Near-field mechanism of photoluminescence excitation in quantum well heterostructures. JETP Letters, 2012, 94, 811-815.	0.4	1
134	Nonresonant radiative exciton transfer by near field between quantum wells. Journal of Experimental and Theoretical Physics, 2013, 117, 944-949.	0.2	1
135	Shot noise suppression and coherent tunneling in a triple barrier resonant diode. , 2013, , .		1
136	Cyclotron resonance in HgCdTe-based heterostructures in strong magnetic fields. Journal of Physics: Conference Series, 2013, 461, 012038.	0.3	1
137	Substrate-emitting semiconductor laser with a trapezoidal active region. Quantum Electronics, 2014, 44, 286-288.	0.3	1
138	Temporal dynamics of impurity photoconductivity in n-GaAs and n-InP. Physics of the Solid State, 2014, 56, 917-921.	0.2	1
139	The temporal dynamics of impurity photoconductivity in quantum wells in GaAs. Journal of Experimental and Theoretical Physics, 2015, 121, 647-652.	0.2	1
140	On a semiconductor laser with a p–n tunnel junction with radiation emission through the substrate. Semiconductors, 2015, 49, 1440-1442.	0.2	1
141	Optimization of InGaP/GaAs/InGaAs heterolasers with tunnel-coupled waveguides. Semiconductors, 2015, 49, 1571-1574.	0.2	1
142	Nonlinear harmonic mixing in an InGaAs/InGaP/GaAs laser on a germanium substrate. Quantum Electronics, 2015, 45, 204-206.	0.3	1
143	Dual-frequency GaAs/InGaP laser diode with a GaAsSb quantum well. Semiconductors, 2017, 51, 1360-1363.	0.2	1
144	Power characteristics of lasers with quantum-well waveguides and blocking layers. Quantum Electronics, 2018, 48, 390-394.	0.3	1

#	Article	IF	CITATIONS
145	Photoluminescence Spectra of InAs/GaInSb/InAs Quantum Wells in the Mid-Infrared Region. Semiconductors, 2020, 54, 1119-1122.	0.2	1
146	Express Characterization of the HgCdTe/CdHgTe Quantum Well Waveguide Heterostructures with the Quasi-Relativistic Carrier Dispersion Law by Room-Temperature Photoluminescence Spectroscopy. Technical Physics Letters, 2021, 47, 154-157.	0.2	1
147	Anomalous electron polarizability of HgTe quantum wells. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 128, 114606.	1.3	1
148	Effects of the Electron—Electron Interaction in the Magneto-Absorption Spectra of HgTe/CdHgTe Quantum Wells with an Inverted Band Structure. JETP Letters, 2020, 112, 508-512.	0.4	1
149	Characterization of GaAs/ InxGa1â^'x As quantum-dot heterostructures by electrical and optical methods. Semiconductors, 1998, 32, 99-104.	0.2	0
150	Zero-phonon and dipole Γ-X electron transitions in GaAs/AlAs quantum-well heterostructures in a longitudinal electric field. Semiconductors, 2000, 34, 575-582.	0.2	0
151	Diagnostics of the hot-hole distribution function in quantum wells in a strong electric field. Semiconductors, 2000, 34, 1073-1078.	0.2	0
152	Analysis of gain and loss anisotropy in the guiding structure of a long-wave intervalley-transfer laser. Technical Physics, 2002, 47, 788-791.	0.2	0
153	Observation of the Middle-Infrared Emission from Semiconductor Lasers Generating Two Frequency Lines in the Near-Infrared Region of the Spectrum. Semiconductors, 2005, 39, 139.	0.2	0
154	Shallow Acceptor Levels in Geâ^•GeSi Heterostructures with Quantum Wells in a Magnetic Field. Physics of the Solid State, 2005, 47, 76.	0.2	0
155	A+-Centers and "Barrier-Spaced―A0-Centers in Ge/GeSi MQW Heterostructures. AlP Conference Proceedings, 2005, , .	0.3	0
156	Intersubband Hole Cyclotron Resonance in Strained Ge/GeSi MQW Heterostructures. AlP Conference Proceedings, 2005, , .	0.3	0
157	Cyclotron Resonance Study of Doped and Undoped InAs/AISb QW Heterostructures. AIP Conference Proceedings, 2005, , .	0.3	0
158	Comparative Analysis of Sequential and Coherent tunneling Models of Shot Noise in Resonant Diodes. AIP Conference Proceedings, 2005, , .	0.3	0
159	Shot Noise Suppression As Indicator Of Coherent Tunneling In Resonant Diodes. AIP Conference Proceedings, 2005, , .	0.3	0
160	The Puzzle Of Shot Noise Suppression In A Series Of N Tunnel Barriers. AIP Conference Proceedings, 2005, , .	0.3	0
161	Parametric optimization of the Bragg reflectors in a laser with the vertical cavity and nonlinear frequency conversion. Semiconductors, 2006, 40, 486-490.	0.2	0
162	THE MONTE-CARLO SIMULATION OF TRANSPORT IN QUANTUM WELL GaAs / AlGaAs HETEROSTRUCTURE DOPED WITH SHALLOW DONORS UNDER IMPURITY BREAKDOWN. International Journal of Nanoscience, 2007, 06, 253-256.	0.4	0

#	Article	IF	CITATIONS
163	Interband Cascade Laser: Multi-Wavelength Generation and Mode Mixing. , 2007, , .		Ο
164	Phonon Induced Resonances in Impurity Photocurrent Spectra of Bulk Semiconductors and Quantum Wells Doped with Shallow Donors. AIP Conference Proceedings, 2007, , .	0.3	0
165	Study of interband cascade lasers with tunneling transition. Bulletin of the Russian Academy of Sciences: Physics, 2007, 71, 96-99.	0.1	О
166	Generation of self-sustained pulsations of radiation in InGaAs/GaAs/InGaP quantum-well lasers. Journal of Applied Spectroscopy, 2007, 74, 589-593.	0.3	0
167	Impurity photoconductivity in strained p-InGaAs/GaAsP heterostructures. JETP Letters, 2008, 88, 197-200.	0.4	Ο
168	Intracavity difference-frequency generation in GaAS/InGaAs/InGaP butt-joint diode lasers. , 2008, , .		0
169	Concepts of terahertz and infrared devices based on graphene structures. , 2011, , .		Ο
170	Optical detection of an electric field in a GaAs/AlGaAs n-i-n heterostructure with double quantum wells. JETP Letters, 2011, 93, 394-398.	0.4	0
171	Polarization dependence of Fano resonances in impurity photoconductivity of quantum wells doped with shallow donors. Physics of the Solid State, 2011, 53, 1253-1262.	0.2	Ο
172	Calculation of the parameters for the Fano resonance in the impurity photocurrent spectrum of semiconductors doped with hydrogen-like donors. Semiconductor Science and Technology, 2011, 26, 049501.	1.0	0
173	Features in the impurity photoconductivity spectra of <i>n</i> -GaAs and <i>n</i> -InP at energies multiple of the optical phonon energy. Semiconductor Science and Technology, 2012, 27, 115008.	1.0	Ο
174	Spectral-kinetic properties of heterostructures with GaAsSb/InGaAs/GaAs-based quantum wells emitting in the range of 1.0–1.2 μm. Semiconductors, 2013, 47, 1504-1507.	0.2	0
175	Resonance Coulomb scattering at shallow donors in AlGaAs/n-GaAs/AlGaAs quantum wells. Semiconductors, 2013, 47, 487-493.	0.2	Ο
176	Terahertz magnetospectroscopy of narrow-gap HgCdTe-based structures. , 2013, , .		0
177	Near-field effect in the absorption spectrum of impurities in crystals. JETP Letters, 2014, 99, 712-714.	0.4	Ο
178	Investigation of GaAs/AlGaAs quantum cascade structures by optical methods based on hot luminescence in the near-infrared range. Semiconductors, 2014, 48, 1463-1466.	0.2	0
179	On the cascade capture of electrons at donors in GaAs quantum wells. Semiconductors, 2015, 49, 1197-1201.	0.2	0
180	An observation of direct-gap electroluminescence in GaAs structures with Ge quantum wells. Semiconductors, 2015, 49, 170-173.	0.2	0

#	Article	IF	CITATIONS
181	Optical characteristics of laser diodes based on A3B5 compounds grown on germanium substrates. Technical Physics Letters, 2015, 41, 304-306.	0.2	0
182	Variation of the emission frequency of a terahertz quantum cascade laser. Technical Physics Letters, 2016, 42, 230-233.	0.2	0
183	The exciton excitations and relaxation processes in low-dimensional semiconductor heterostructures with quantum wells. Semiconductors, 2016, 50, 1691-1695.	0.2	0
184	Method for narrowing the directional pattern of an InGaAs/GaAs/AlGaAs multiwell heterolaser. Semiconductors, 2016, 50, 1488-1492.	0.2	0
185	Stimulated emission from a metamorphic GaAsSb bulk layer on a GaAs substrate. Semiconductors, 2016, 50, 586-589.	0.2	0
186	Activation conductivity in HgTe/CdHgTe quantum wells at integer Landau level filling factors: Role of the random potential. Semiconductors, 2017, 51, 1562-1570.	0.2	0
187	HgCdTe based quantum well heterostructures for long-wavelength lasers operating in 5 - 15 THz range. Journal of Physics: Conference Series, 2018, 1092, 012126.	0.3	0
188	Photodetectors with an InGaAs Active Region and InGaP Metamorphic Buffer Layer Grown on GaAs Substrates. Semiconductors, 2018, 52, 1564-1567.	0.2	0
189	Stimulated Emission in the 1.3–1.5 μm Spectral Range from AlGaInAs Quantum Wells in Hybrid Light-Emitting Ill–V Heterostructures on Silicon Substrates. Semiconductors, 2018, 52, 1495-1499.	0.2	0
190	Stimulated Emission at 1.3-î¼m Wavelength in Metamorphic InGaAs/InGaAsP Structure with Quantum Wells Grown on Ge/Si(001) Substrate. Technical Physics Letters, 2018, 44, 735-738.	0.2	0
191	Magnetooptical Studies and Stimulated Emission in Narrow Gap HgTe/CdHgTe Structures in the Very Long Wavelength Infrared Range. Semiconductors, 2018, 52, 436-441.	0.2	0
192	Generation of THz radiation at a difference frequency in a HgCdTe-based laser. Quantum Electronics, 2019, 49, 689-692.	0.3	0
193	10.1007/s11453-008-3021-6. , 2010, 42, 354.		0
194	Investigation of Stimulated Emission from HgTe/CdHgTe Quantum-Well Heterostructures in the 3–5 μm Atmospheric Transparency Window. Semiconductors, 2020, 54, 1365-1370.	0.2	0
195	Model of a Terahertz Quantum-Cascade Laser Based on Two-Dimensional Plasmons. Semiconductors, 2021, 55, 828-830.	0.2	0