
Ilya Seregin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4427804/publications.pdf Version: 2024-02-01

ILVA SEDECIN

#	Article	IF	CITATIONS
1	Physiological Aspects of Cadmium and Lead Toxic Effects on Higher Plants. Russian Journal of Plant Physiology, 2001, 48, 523-544.	0.5	462
2	Physiological role of nickel and its toxic effects on higher plants. Russian Journal of Plant Physiology, 2006, 53, 257-277.	0.5	447
3	Distribution and Toxic Effects of Cadmium and Lead on Maize Roots. Russian Journal of Plant Physiology, 2004, 51, 525-533.	0.5	160
4	Roles of root and shoot tissues in transport and accumulation of cadmium, lead, nickel, and strontium. Russian Journal of Plant Physiology, 2008, 55, 1-22.	0.5	155
5	Chelation by histidine inhibits the vacuolar sequestration of nickel in roots of the hyperaccumulator <i>Thlaspi caerulescens</i> . New Phytologist, 2009, 183, 106-116.	3.5	127
6	Nickel Toxicity and Distribution in Maize Roots. Russian Journal of Plant Physiology, 2003, 50, 711-717.	0.5	83
7	Comparative Impacts of Heavy Metals on Root Growth as Related to Their Specificity and Selectivity. Russian Journal of Plant Physiology, 2003, 50, 398-406.	0.5	57
8	Histidineâ€mediated xylem loading of zinc is a speciesâ€wide character in <i><scp>N</scp>occaea caerulescens</i> . New Phytologist, 2014, 203, 508-519.	3.5	54
9	Histochemical methods for detection of heavy metals and strontium in the tissues of higher plants. Russian Journal of Plant Physiology, 2011, 58, 721-727.	0.5	48
10	Root growth responses to lead in young maize seedlings. Plant and Soil, 1998, 200, 55-61.	1.8	46
11	Distribution of Cadmium, Lead, Nickel, and Strontium in Imbibing Maize Caryopses. Russian Journal of Plant Physiology, 2005, 52, 565-569.	0.5	46
12	Strontium Transport, Distribution, and Toxic Effects on Maize Seedling Growth. Russian Journal of Plant Physiology, 2004, 51, 215-221.	0.5	44
13	The effects of lead, nickel, and strontium nitrates on cell division and elongation in maize roots. Russian Journal of Plant Physiology, 2009, 56, 242-250.	0.5	40
14	Low-molecular-weight ligands in plants: role in metal homeostasis and hyperaccumulation. Photosynthesis Research, 2021, 150, 51-96.	1.6	37
15	Cadmium tolerance and accumulation in Excluder Thlaspi arvense and various accessions of hyperaccumulator Noccaea caerulescens. Russian Journal of Plant Physiology, 2015, 62, 837-846.	0.5	32
16	Transcriptional effects of cadmium on iron homeostasis differ in calamine accessions of <i>Noccaea caerulescens</i> . Plant Journal, 2019, 97, 306-320.	2.8	27
17	Nickel and zinc accumulation capacities and tolerance to these metals in the excluder Thlaspi arvense and the hyperaccumulator Noccaea caerulescens. Russian Journal of Plant Physiology, 2014, 61, 204-214.	0.5	24
18	Effects of heavy metals and strontium on division of root cap cells and meristem structural organization. Russian Journal of Plant Physiology, 2007, 54, 257-266.	0.5	23

Ilya Seregin

#	Article	IF	CITATIONS
19	Intra-specific variation in zinc, cadmium and nickel hypertolerance and hyperaccumulation capacities in Noccaea caerulescens. Plant and Soil, 2020, 452, 479-498.	1.8	23
20	Tissue zinc distribution in maize seedling roots and its action on growth. Russian Journal of Plant Physiology, 2011, 58, 109-117.	0.5	19
21	Zinc accumulation and distribution over tissues in Noccaea Ñaerulescens in nature and in hydroponics: a comparison. Plant and Soil, 2017, 411, 5-16.	1.8	18
22	Histidine promotes the loading of nickel and zinc, but not of cadmium, into the xylem in <i>Noccaea caerulescens</i> . Plant Signaling and Behavior, 2014, 9, e29580.	1.2	14
23	Plasmolysis as a Tool to Reveal Lead Localization in the Apoplast of Root Cells. Russian Journal of Plant Physiology, 2002, 49, 283-285.	0.5	12
24	Nickel and zinc effects, accumulation and distribution in ruderal plants Lepidium ruderale and Capsella bursa-pastoris. Acta Physiologiae Plantarum, 2014, 36, 3291-3305.	1.0	12
25	Effects of cadmium and lead on phytochelatin accumulation in maize shoots and different root parts. Doklady Biological Sciences, 2007, 415, 304-306.	0.2	10
26	Role of root and shoot tissues of excluders and hyperaccumulators in nickel transport and accumulation. Doklady Biological Sciences, 2007, 415, 295-297.	0.2	9
27	Accumulation of Nickel by Excluder Thlaspi arvense and Hyperaccumulator Noccaea caerulescens upon Short-Term and Long-Term Exposure. Russian Journal of Plant Physiology, 2020, 67, 303-311.	0.5	9
28	Translocation of Ni and Zn in Odontarrhena corsica and Noccaea caerulescens: the effects of exogenous histidine and Ni/Zn interactions. Plant and Soil, 2021, 468, 295-318.	1.8	9
29	Enhancement of nickel and lead accumulation and their toxic growth-inhibitory effects on amaranth seedlings in the presence of calcium. Russian Journal of Plant Physiology, 2009, 56, 80-84.	0.5	8
30	Comparison of L-Histidine Effects on Nickel Translocation into the Shoots of Different Species of the Genus Alyssum. Russian Journal of Plant Physiology, 2019, 66, 340-344.	0.5	8
31	Histochemical analysis of nickel distribution in the hyperaccumulator and excluder in the genus Alyssum L Doklady Biological Sciences, 2009, 429, 548-550.	0.2	7
32	Histidine-Mediated Nickel and Zinc Translocation in Intact Plants of the Hyperaccumulator Noccaea caerulescens. Russian Journal of Plant Physiology, 2021, 68, S37-S50.	0.5	6
33	Lead effects on cereal roots in terms of cell growth, root architecture and metal accumulation. , 2001, , 165-170.		5
34	Correlated Variation of the Zn Accumulation and Tolerance Capacities among Populations and Ecotypes of the Zn Hyperaccumulator, Noccaea caerulescens. Russian Journal of Plant Physiology, 2021, 68, S26-S36.	0.5	3
35	10.1007/s11183-008-1001-8., 2010, 55, 1.		2
36	Histidine-Mediated Nickel and Zinc Translocation in Arabidopsis thaliana and Lepidium ruderale. Russian Journal of Plant Physiology, 2022, 69, 1.	0.5	2

#	Article	IF	CITATIONS
37	Nickel Tolerance and Accumulation Capacities in Different Populations of the Hyperaccumulator Noccaea caerulescens. Russian Journal of Plant Physiology, 2022, 69, .	0.5	2