Mike Tebyetekerwa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4427660/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science, 2021, 371, 390-395.	12.6	270
2	Highly sensitive and stretchable piezoresistive strain sensor based on conductive poly(styrene-butadiene-styrene)/few layer graphene composite fiber. Composites Part A: Applied Science and Manufacturing, 2018, 105, 291-299.	7.6	157
3	Polyester@MXene nanofibers-based yarn electrodes. Journal of Power Sources, 2018, 396, 683-690.	7.8	147
4	Robust, hydrophilic graphene/cellulose nanocrystal fiber-based electrode with high capacitive performance and conductivity. Carbon, 2018, 127, 218-227.	10.3	143
5	"Stiff–Soft―Binary Synergistic Aerogels with Superflexibility and High Thermal Insulation Performance. Advanced Functional Materials, 2019, 29, 1806407.	14.9	111
6	Electrospun Nanofibers-Based Face Masks. Advanced Fiber Materials, 2020, 2, 161-166.	16.1	108
7	Superior piezoresistive strain sensing behaviors of carbon nanotubes in one-dimensional polymer fiber structure. Carbon, 2018, 140, 1-9.	10.3	104
8	Critical insight: challenges and requirements of fibre electrodes for wearable electrochemical energy storage. Energy and Environmental Science, 2019, 12, 2148-2160.	30.8	104
9	Unveiling Polyindole: Freestanding As-electrospun Polyindole Nanofibers and Polyindole/Carbon Nanotubes Composites as Enhanced Electrodes for Flexible All-solid-state Supercapacitors. Electrochimica Acta, 2017, 247, 400-409.	5.2	76
10	Allâ€Celluloseâ€Based Quasiâ€Solidâ€State Sodiumâ€Ion Hybrid Capacitors Enabled by Structural Hierarchy. Advanced Functional Materials, 2019, 29, 1903895.	14.9	75
11	Homogenous metallic deposition regulated by defect-rich skeletons for sodium metal batteries. Energy and Environmental Science, 2021, 14, 6381-6393.	30.8	70
12	Polyindole batteries and supercapacitors. Energy Storage Materials, 2020, 33, 336-359.	18.0	66
13	Natural and industrial wastes for sustainable and renewable polymer composites. Renewable and Sustainable Energy Reviews, 2022, 158, 112054.	16.4	65
14	Circular Economy and Sustainability of the Clothing and Textile Industry. Materials Circular Economy, 2021, 3, 1.	3.2	64
15	Laponite-based Nanomaterials for Biomedical Applications: A Review. Current Pharmaceutical Design, 2019, 25, 424-443.	1.9	62
16	The Role of Hydrothermal Carbonization in Sustainable Sodiumâ€lon Battery Anodes. Advanced Energy Materials, 2022, 12, .	19.5	61
17	Materials interaction in aggregation-induced emission (AIE)-based fluorescent resin for smart coatings. Journal of Materials Chemistry C, 2018, 6, 12849-12857.	5.5	57
18	Mechanisms and Applications of Steady-State Photoluminescence Spectroscopy in Two-Dimensional Transition-Metal Dichalcogenides. ACS Nano, 2020, 14, 14579-14604.	14.6	56

#	Article	IF	CITATIONS
19	A bottom-up approach to design wearable and stretchable smart fibers with organic vapor sensing behaviors and energy storage properties. Journal of Materials Chemistry A, 2018, 6, 13633-13643.	10.3	55
20	What Is Next for Electrospinning?. Matter, 2020, 2, 279-283.	10.0	49
21	Surface Self-Assembly of Functional Electroactive Nanofibers on Textile Yarns as a Facile Approach toward Super Flexible Energy Storage. ACS Applied Energy Materials, 2018, 1, 377-386.	5.1	47
22	Hydrogenation of Phosphorus-Doped Polycrystalline Silicon Films for Passivating Contact Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 5554-5560.	8.0	47
23	Extremely stretchable and healable ionic conductive hydrogels fabricated by surface competitive coordination for human-motion detection. Chemical Engineering Journal, 2021, 420, 127637.	12.7	47
24	Fluorescent aggregation-induced emission (AIE)-based thermosetting electrospun nanofibers: fabrication, properties and applications. Materials Chemistry Frontiers, 2019, 3, 2491-2498.	5.9	46
25	Highly Stretchable and Reconfigurable Ionogels with Unprecedented Thermoplasticity and Ultrafast Self-Healability Enabled by Gradient-Responsive Networks. Macromolecules, 2021, 54, 3832-3844.	4.8	45
26	Controlled synergistic strategy to fabricate 3D-skeletal hetero-nanosponges with high performance for flexible energy storage applications. Journal of Materials Chemistry A, 2017, 5, 21114-21121.	10.3	44
27	Perovskite Solar Fibers: Current Status, Issues and Challenges. Advanced Fiber Materials, 2019, 1, 101-125.	16.1	42
28	Green approach to fabricate Polyindole composite nanofibers for energy and sensor applications. Materials Letters, 2017, 209, 400-403.	2.6	40
29	Vanadium-Doped Monolayer MoS ₂ with Tunable Optical Properties for Field-Effect Transistors. ACS Applied Nano Materials, 2021, 4, 769-777.	5.0	39
30	Nanostructured polyaniline/poly(styrene-butadiene-styrene) composite fiber for use as highly sensitive and flexible ammonia sensor. Synthetic Metals, 2017, 233, 86-93.	3.9	37
31	Synergistic effect of CNT films impregnated with CNT modified epoxy solution towards boosted interfacial bonding and functional properties of the composites. Composites Part A: Applied Science and Manufacturing, 2018, 110, 1-10.	7.6	37
32	Water-based fluorescent paint: Presenting a novel approach to study and solve the aggregation caused quench (ACQ) effect in traditional fluorescent materials. Progress in Organic Coatings, 2018, 120, 1-9.	3.9	36
33	Quantifying Quasiâ€Fermi Level Splitting and Mapping its Heterogeneity in Atomically Thin Transition Metal Dichalcogenides. Advanced Materials, 2019, 31, e1900522.	21.0	34
34	Janus hybrid sustainable all-cellulose nanofiber sponge for oil-water separation. International Journal of Biological Macromolecules, 2021, 185, 997-1004.	7.5	33
35	Understanding electrochemical capacitors with in-situ techniques. Renewable and Sustainable Energy Reviews, 2021, 149, 111418.	16.4	32
36	Electrocapacitive desalination with nitrogen-doped hierarchically structured carbon prepared using a sustainable salt-template method. Chemical Engineering Journal, 2022, 446, 137211.	12.7	28

#	Article	IF	CITATIONS
37	Techniques enabling inorganic materials into wearable fiber/yarn and flexible lithium-ion batteries. Energy Storage Materials, 2021, 43, 62-84.	18.0	25
38	Highly efficient photovoltaic energy storage hybrid system based on ultrathin carbon electrodes designed for a portable and flexible power source. Journal of Power Sources, 2019, 422, 196-207.	7.8	24
39	Perovskite solar cell-hybrid devices: thermoelectrically, electrochemically, and piezoelectrically connected power packs. Journal of Materials Chemistry A, 2019, 7, 26661-26692.	10.3	24
40	An attempt to adopt aggregation-induced emission to study organic–inorganic composite materials. Journal of Materials Chemistry C, 2018, 6, 7003-7011.	5.5	23
41	Emission Control from Transition Metal Dichalcogenide Monolayers by Aggregation-Induced Molecular Rotors. ACS Nano, 2020, 14, 7444-7453.	14.6	23
42	Twist-driven wide freedom of indirect interlayer exciton emission in MoS2/WS2 heterobilayers. Cell Reports Physical Science, 2021, 2, 100509.	5.6	23
43	1-D polymer ternary composites: Understanding materials interaction, percolation behaviors and mechanism toward ultra-high stretchable and super-sensitive strain sensors. Science China Materials, 2019, 62, 995-1004.	6.3	22
44	Highly Enhanced Light–Matter Interaction in MXene Quantum Dots–Monolayer WS ₂ Heterostructure. Small, 2021, 17, e2006309.	10.0	22
45	Complementary bulk and surface passivations for highly efficient perovskite solar cells by gas quenching. Cell Reports Physical Science, 2021, 2, 100511.	5.6	21
46	Sub-Bandgap Luminescence from Doped Polycrystalline and Amorphous Silicon Films and Its Application to Understanding Passivating-Contact Solar Cells. ACS Applied Energy Materials, 2018, 1, 6619-6625.	5.1	18
47	Improved thermal and mechanical performance of ramie fibers reinforced poly(lactic acid) biocomposites via fiber surface modifications and composites thermal annealing. Polymer Composites, 2018, 39, E1867.	4.6	17
48	Preparation of silica/polymer nanocomposites with aggregation-induced emission properties as fluorescent responsive coatings. Progress in Organic Coatings, 2019, 127, 8-15.	3.9	17
49	High stress-driven voltages in net-like layer-supported organic–inorganic perovskites. Journal of Materials Chemistry C, 2020, 8, 2643-2658.	5.5	14
50	Intelligent Materials. Matter, 2020, 3, 590-593.	10.0	14
51	Precipitated silica agglomerates reinforced with cellulose nanofibrils as adsorbents for heavy metals. RSC Advances, 2018, 8, 33129-33137.	3.6	13
52	Retained fluorescence of aggregation-caused quenched Rhodamine grafted in the hierarchical mesopores of silica MCM-41 at solid-state. Advanced Powder Technology, 2019, 30, 2218-2224.	4.1	13
53	Hydrogenation Mechanisms of Poly‣i/SiO _{<i>x</i>} Passivating Contacts by Different Capping Layers. Solar Rrl, 2020, 4, 1900476.	5.8	13
54	Aluminium and zinc co-doped CuInS2 QDs for enhanced trion modulation in monolayer WS2 toward improved electrical properties. Journal of Materials Chemistry C, 2019, 7, 15074-15081.	5.5	12

MIKE TEBYETEKERWA

#	Article	IF	CITATIONS
55	Hydrogen-Assisted Defect Engineering of Doped Poly-Si Films for Passivating Contact Solar Cells. ACS Applied Energy Materials, 2019, 2, 8783-8791.	5.1	12
56	All room-temperature synthesis, N2 photofixation and reactivation over 2D cobalt oxides. Applied Catalysis B: Environmental, 2022, 304, 121001.	20.2	11
57	Influence of the anode buffer layer materials and the light radiation power on the efficiency of a planar p-i-n perovskite solar cell: theory and simulation. Journal of Photonics for Energy, 2022, 12, .	1.3	11
58	Hydrogenation Mechanisms of Poly‣i/SiO _{<i>x</i>} Passivating Contacts by Different Capping Layers. Solar Rrl, 2020, 4, 2070033.	5.8	10
59	Aggregation-induced emission molecules enable characterization of superhydrophobic coatings. Progress in Organic Coatings, 2022, 163, 106633.	3.9	10
60	Spatially and Spectrally Resolved Absorptivity: New Approach for Degradation Studies in Perovskite and Perovskite/Silicon Tandem Solar Cells. Advanced Energy Materials, 2020, 10, 1902901.	19.5	9
61	Which is a better fluorescent sensor: aggregation-induced emission-based nanofibers or thin-coating films?. Materials Advances, 2020, 1, 574-578.	5.4	9
62	The Current Working Conditions in Ugandan Apparel Assembly Plants. Safety and Health at Work, 2017, 8, 378-385.	0.6	7
63	Contactless and Spatially Resolved Determination of Currentâ~'Voltage Curves in Perovskite Solar Cells via Photoluminescence. Solar Rrl, 2021, 5, 2100348.	5.8	7
64	Exploring the mechanism of self-stratifying coatings with aggregation-induced emission. Progress in Organic Coatings, 2021, 159, 106448.	3.9	7
65	Synthesis of carbon-modified cobalt disphosphide as anode for sodium-ion storage. Electrochimica Acta, 2022, 423, 140611.	5.2	4
66	Investigation of Gallium–Boron Spinâ€On Codoping for polyâ€&i/SiO _{<i>x</i>} Passivating Contacts. Solar Rrl, 2021, 5, 2100653.	5.8	3
67	Contactless, nondestructive determination of dopant profiles of localized boron-diffused regions in silicon wafers at room temperature. Scientific Reports, 2019, 9, 10423.	3.3	2
68	Solar Cells: Quantifying Quasiâ€Fermi Level Splitting and Mapping its Heterogeneity in Atomically Thin Transition Metal Dichalcogenides (Adv. Mater. 25/2019). Advanced Materials, 2019, 31, 1970180.	21.0	2
69	Interfacing transition metal dichalcogenides with chromium germanium telluride quantum dots for controllable light-matter interactions. Journal of Colloid and Interface Science, 2022, 611, 432-440.	9.4	2
70	Contactless and Spatially Resolved Determination of Currentâ^'Voltage Curves in Perovskite Solar Cells via Photoluminescence. Solar Rrl, 2021, 5, 2170083.	5.8	1
71	Advanced Chemical Applications of Modified Cotton. Textile Science and Clothing Technology, 2020, , 501-527.	0.5	1
72	Investigation of Gallium–Boron Spinâ€On Codoping for poly‣i/SiO _{<i>x</i>} Passivating Contacts. Solar Rrl, 2021, 5, .	5.8	1

#	Article	IF	CITATIONS
73	Predicting Open-Circuit Voltages in Atomically-Thin Monolayer Transition Metal Dichalcogenides-Based Solar Cells. , 2019, , .		0
74	Luminescence from poly-Si films and its application to study passivating-contact solar cells. , 2019, , .		0
75	Tandem Solar Cells: Spatially and Spectrally Resolved Absorptivity: New Approach for Degradation Studies in Perovskite and Perovskite/Silicon Tandem Solar Cells (Adv. Energy Mater. 4/2020). Advanced Energy Materials, 2020, 10, 2070016.	19.5	0