Ji Ung Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4427486/publications.pdf

Version: 2024-02-01

331670 552781 1,465 25 21 26 citations h-index g-index papers 26 26 26 1384 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Recent Progress and Perspective of Advanced Highâ€Energy Coâ€Less Niâ€Rich Cathodes for Liâ€lon Batteries: Yesterday, Today, and Tomorrow. Advanced Energy Materials, 2020, 10, 2002027.	19.5	221
2	Sodiumâ€lon Batteries: Building Effective Layered Cathode Materials with Longâ€Term Cycling by Modifying the Surface via Sodium Phosphate. Advanced Functional Materials, 2018, 28, 1705968.	14.9	138
3	K0.54[Co0.5Mn0.5]O2: New cathode with high power capability for potassium-ion batteries. Nano Energy, 2019, 61, 284-294.	16.0	120
4	Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 23671-23680.	10.3	107
5	Exceptionally highly stable cycling performance and facile oxygen-redox of manganese-based cathode materials for rechargeable sodium batteries. Nano Energy, 2019, 59, 197-206.	16.0	100
6	A New Strategy to Build a Highâ€Performance P′2â€Type Cathode Material through Titanium Doping for Sodiumâ€Ion Batteries. Advanced Functional Materials, 2019, 29, 1901912.	14.9	76
7	Facile migration of potassium ions in a ternary P3-type K0.5[Mn0.8Fe0.1Ni0.1]O2 cathode in rechargeable potassium batteries. Energy Storage Materials, 2020, 25, 714-723.	18.0	57
8	New Insight on Openâ€Structured Sodium Vanadium Oxide as Highâ€Capacity and Long Life Cathode for Zn–Ion Storage: Structure, Electrochemistry, and Firstâ€Principles Calculation. Advanced Energy Materials, 2020, 10, 2001595.	19.5	54
9	Revisit of layered sodium manganese oxides: achievement of high energy by Ni incorporation. Journal of Materials Chemistry A, 2018, 6, 8558-8567.	10.3	52
10	Mnâ€Rich P′2â€Na _{0.67} [Ni _{0.1} Fe _{0.1} Mn _{0.8}]O _{2Highâ€Energyâ€Density and Longâ€Life Cathode Material for Sodiumâ€Ion Batteries. Advanced Energy Materials, 2020, 10, 2001346.}	b> as 19.5	50
11	P2â€K _{0.75} [Ni _{1/3} Mn _{2/3}]O ₂ Cathode Material for High Power and Long Life Potassiumâ€ion Batteries. Advanced Energy Materials, 2020, 10, 1903605.	19.5	50
12	Unraveling the Role of Earth-Abundant Fe in the Suppression of Jahn–Teller Distortion of Pâ€2-Type Na _{2/3} MnO ₂ : Experimental and Theoretical Studies. ACS Applied Materials & Linterfaces, 2018, 10, 40978-40984.	8.0	49
13	Controlled Oxygen Redox for Excellent Power Capability in Layered Sodiumâ€Based Compounds. Advanced Energy Materials, 2019, 9, 1901181.	19.5	49
14	A new pre-sodiation additive for sodium-ion batteries. Energy Storage Materials, 2020, 32, 281-289.	18.0	43
15	Controllable charge capacity using a black additive for high-energy-density sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 3903-3909.	10.3	41
16	Understanding on the structural and electrochemical performance of orthorhombic sodium manganese oxides. Journal of Materials Chemistry A, 2019, 7, 202-211.	10.3	39
17	Cycling Stability of Layered Potassium Manganese Oxide in Nonaqueous Potassium Cells. ACS Applied Materials & Samp; Interfaces, 2019, 11, 27770-27779.	8.0	38
18	An optimized approach toward high energy density cathode material for K-ion batteries. Energy Storage Materials, 2020, 27, 342-351.	18.0	37

#	Article	IF	CITATIONS
19	New Insight into Ethylenediaminetetraacetic Acid Tetrasodium Salt as a Sacrificing Sodium Ion Source for Sodium-Deficient Cathode Materials for Full Cells. ACS Applied Materials & Interfaces, 2019, 11, 5957-5965.	8.0	26
20	Nb-Doped titanium phosphate for sodium storage: electrochemical performance and structural insights. Journal of Materials Chemistry A, 2019, 7, 5748-5759.	10.3	24
21	Rocksalt-type metal sulfide anodes for high-rate sodium storage. Journal of Materials Chemistry A, 2018, 6, 6867-6873.	10.3	23
22	Impact of Na ₂ MoO ₄ nanolayers autogenously formed on tunnel-type Na _{0.44} MnO ₂ . Journal of Materials Chemistry A, 2019, 7, 13522-13530.	10.3	23
23	Hollanditeâ€Type VO _{1.75} (OH) _{0.5} : Effective Sodium Storage for Highâ€Performance Sodiumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1900603.	19.5	16
24	Oxalate-Based High-Capacity Conversion Anode for Potassium Storage. ACS Sustainable Chemistry and Engineering, 2020, 8, 3743-3750.	6.7	15
25	Revealing sodium storage mechanism in lithium titanium phosphate: Combined experimental and theoretical study. Journal of Power Sources, 2020, 455, 227976.	7.8	13