
$\overline{D} \overline{D} = \overline{N} = \overline{N} \overline{D} = \overline{N} \overline{D} = \overline{N} = \overline{N$

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4427420/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Creation of heterogeneous materials on the basis of B4C and Ni powders by the method of cold spraying with subsequent layer-by-layer laser treatment. Journal of Applied Mechanics and Technical Physics, 2017, 58, 947-955.	0.5	35
2	Manufacturing of high-strength laser welded joints of an industrial aluminum alloy of system Al-Cu-Li by means of post heat treatment. Journal of Manufacturing Processes, 2019, 41, 101-110.	5.9	34
3	Deposition of Cermet Coatings on the Basis of Ti, Ni, WC, and B4C by Cold Gas Dynamic Spraying with Subsequent Laser Irradiation. Physical Mesomechanics, 2020, 23, 291-300.	1.9	28
4	Similarity Laws in Laser Cladding of Cermet Coatings. Journal of Applied Mechanics and Technical Physics, 2019, 60, 758-767.	0.5	21
5	Experimental Comparison of Laser Cutting of Steel with Fiber and CO2 Lasers on the Basis of Minimal Roughness. Physics Procedia, 2014, 56, 875-884.	1.2	19
6	Mechanical characteristics of high-quality laser cutting of steel by fiber and CO2 lasers. Journal of Applied Mechanics and Technical Physics, 2015, 56, 726-735.	0.5	19
7	Energy balance in high-quality cutting of steel by fiber and CO2 lasers. Journal of Applied Mechanics and Technical Physics, 2017, 58, 371-378.	0.5	19
8	CREATION OF A FUNCTIONALLY GRADIENT MATERIAL BY THE SELECTIVE LASER MELTING METHOD. Journal of Applied Mechanics and Technical Physics, 2020, 61, 878-887.	0.5	18
9	Microstructure and mechanical characterization of TI6AL4V-B4C metal ceramic alloy, produced by laser powder-bed fusion additive manufacturing. International Journal of Advanced Manufacturing Technology, 2020, 109, 579-588.	3.0	16
10	Experimental study of laser-oxygen cutting of low-carbon steel using fibre and CO ₂ lasers under conditions of minimal roughness. Quantum Electronics, 2014, 44, 970-974.	1.0	14
11	High-quality laser cutting of stainless steel in inert gas atmosphere by ytterbium fibre and CO2lasers. Quantum Electronics, 2014, 44, 233-238.	1.0	13
12	Experimental comparison of laser energy losses in high-quality laser-oxygen cutting of low-carbon steel using radiation from fibre and CO ₂ lasers. Quantum Electronics, 2015, 45, 873-878.	1.0	9
13	The influence of the thermal wake due to pulsating optical discharge on the aerodynamic-drag force. Thermophysics and Aeromechanics, 2018, 25, 257-264.	0.5	8
14	The Utmost Thickness of the Cut Sheet for the Qualitative Oxygen-assisted Laser Cutting of Low-carbon Steel. Physics Procedia, 2016, 83, 296-301.	1.2	7
15	The effect of using repetitively pulsed laser radiation in selective laser melting when creating a metal-matrix composite Ti-6Al-4V–B4C. International Journal of Advanced Manufacturing Technology, 2021, 117, 1891-1904.	3.0	5
16	Investigation of the microstructure of Ni and B4C ceramic-metal mixtures obtained by cold spray coating and followed by laser cladding. AIP Conference Proceedings, 2017, , .	0.4	4
17	Beam polarization effect on the surface quality during steel cutting by a CO2 laser. Journal of Laser Applications, 2018, 30, .	1.7	3
18	Porous steel laser welding technology. AIP Conference Proceedings, 2020, , .	0.4	3

#	Article	IF	CITATIONS
19	CREATION OF A HETEROGENEOUS MATERIAL BASED ON THE TITANIUM ALLOY AND TITANIUM BORIDE BY SELECTIVE LASER MELTING. Journal of Applied Mechanics and Technical Physics, 2021, 62, 752-759.	0.5	3
20	EFFECT OF LASER IMPACT PARAMETERS ON THE FORMATION OF A POOL OF THE MOLTEN B4C— Ti–6Al— CERMET MIXTURE. Journal of Applied Mechanics and Technical Physics, 2022, 63, 268-278.	4V 0.5	3
21	Formation of B4C – Ti-6Al-4V Cermet Coatings by the Method of SLM. Metal Science and Heat Treatment, 2021, 62, 696-700.	0.6	2
22	Standardization of oxygen-assisted laser cutting by the surface roughness criterion. Metal Working and Material Science, 2016, , 16-21.	0.3	2
23	Study of the Laser Radiation Focusing Modes Effect on Geometrical and Mechanical Properties of Metal-Ceramic Tracks. Metal Working and Material Science, 2019, 21, 82-92.	0.3	2
24	Optimization of laser cladding on the base of additive technologies of metal-ceramic powders. AIP Conference Proceedings, 2017, , .	0.4	1
25	Influence of scandium on the microstructure and strength properties of the welded joint at the laser welding of aluminum-lithium alloys. AIP Conference Proceedings, 2017, , .	0.4	1
26	Optimization of laser cladding of cold spray coatings with B4C and Ni powders. AIP Conference Proceedings, 2017, , .	0.4	1
27	On the effects of thermal wake from the optical pulsating discharge on the body aerodynamic drag. AIP Conference Proceedings, 2018, , .	0.4	1
28	Heterogeneous B4C/Ti/Al materials produced by cold gas dynamic spraying followed by laser treatment. AIP Conference Proceedings, 2018, , .	0.4	1
29	The influence of laser radiation action modes on the microhardness of metal-ceramic tracks in additive technologies. AIP Conference Proceedings, 2019, , .	0.4	1
30	The formation of heterogeneous wear-resistant coatings by the additive technology method. Journal of Physics: Conference Series, 2019, 1404, 012019.	0.4	1
31	Formation of metal-ceramic B4C and Ti-6Al-4V structures by the SLM method. AIP Conference Proceedings, 2019, , .	0.4	1
32	Investigation of the Microstructure of High-Strength Laser Welded Joints of Aluminum-Lithium Aeronautical Alloys. Metal Working and Material Science, 2018, 20, 50-62.	0.3	1
33	Evolution of the microstructure and mechanical properties of coatings of a steel-tungsten-carbide mixture obtained by sequential application of cold spray and selective laser melting. AIP Conference Proceedings, 2020, , .	0.4	1
34	COMPARATIVE INVESTIGATION OF NICKEL-BASED METAL-CERAMIC STRUCTURES WITH CERAMIC PARTICLES OF TUNGSTEN AND BORON CARBIDES MADE BY THE SELECTIVE LASER MELTING METHOD. Nanoscience and Technology, 2020, 11, 247-257.	1.8	1
35	Energy characteristics of cutting of thick steel sheets by a CO2and fiber laser. , 2013, , .		0
36	Energy conditions of a high-quality cut at the laser-oxygen cutting with fiber and CO2 lasers. , 2013, , .		0

Energy conditions of a high-quality cut at the laser-oxygen cutting with fiber and CO2 lasers. , 2013, , . 36

#	Article	IF	CITATIONS
37	Experimental comparison of the oxygen-assist laser cutting with a fiber and CO2-laser under the condition of minimal roughness. , 2014, , .		0
38	Experimental comparison of the cutting speed and quality for mild and stainless steel sheets with fiber and CO ₂ lasers. Proceedings of SPIE, 2014, , .	0.8	0
39	Energetics of the multi-phase fluid flow in a narrow kerf in laser cutting conditions. AIP Conference Proceedings, 2016, , .	0.4	0
40	Experimental investigation of the effect of the laser beam polarization state on the quality of steel sheet cutting. AIP Conference Proceedings, 2017, , .	0.4	0
41	Thermophysical problems of laser cutting of metals. MATEC Web of Conferences, 2017, 115, 08004.	0.2	0
42	Investigation of the effect of an optical pulsating discharge on the model's aerodynamic drag in supersonic air flow. AIP Conference Proceedings, 2017, , .	0.4	0
43	Optimization of the laser radiation action for SLM-formation of the WC-Ni coating. AIP Conference Proceedings, 2018, , .	0.4	0
44	Scaling laws (SLM) for additive technologies of metal-ceramic coatings. AIP Conference Proceedings, 2019, , .	0.4	0
45	Analysis of the effect of laser action modes on cold spray coatings based on Ti - B4C. AIP Conference Proceedings, 2020, , .	0.4	0
46	Investigation of Ti/B4C coatings microstructure obtained by cold gas-dynamic spraying and selective laser melting. AIP Conference Proceedings, 2020, , .	0.4	0
47	Optimal choice of the technology of thick steel sheets laser cutting. Metal Working and Material Science, 2016, , 15-22.	0.3	0
48	Creation of a Heterogeneous Material Based on the Titanium Alloy and Titanium Boride by the Method of Controlled Laser Processing. Prikladnaâ Mehanika, TehniÄeskaâ Fizika, 2021, 62, 58-67.	0.0	0
49	EFFECT OF BORON CARBIDE CONCENTRATION ON THE MICROSTRUCTURE AND MECHANICAL PROPERTIES OF THE TI-6AI-4V TITANIUM ALLOY PRODUCED BY SELECTIVE LASER MELTING. Nanoscience and Technology, 2020, 11, 283-296.	1.8	0
50	Comparative study of the effect of the continuous and impulse-periodical radiation on the microhardness single tracks. AIP Conference Proceedings, 2020, , .	0.4	0
51	Experimental investigation of the high-velocity collision of a steel ball and a heterogeneous structure grown by cold spraying and laser fusion. AIP Conference Proceedings, 2020, , .	0.4	0
52	Laser Welding of Heterogeneous Materials Ni-Fe-Cu and Fe-C-Mn-Si for Production of Drilling Tools. Jom, 0, , 1.	1.9	0
53	Effect of Laser Action Parameters on the Formation of a Bath of the Molten B4C - Ti-6Al-4V Cermet Mixture. Prikladnaâ Mehanika, TehniÄeskaâ Fizika, 2022, 63, 104-116.	0.0	0