
Pietro Farinelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4427063/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of a Common Non-Apoptotic Cell Death Mechanism in Hereditary Retinal Degeneration. PLoS ONE, 2014, 9, e112142.	2.5	191
2	Excessive HDAC activation is critical for neurodegeneration in the rd1 mouse. Cell Death and Disease, 2010, 1, e24-e24.	6.3	100
3	Calpain and PARP Activation during Photoreceptor Cell Death in P23H and S334ter Rhodopsin Mutant Rats. PLoS ONE, 2011, 6, e22181.	2.5	94
4	IFT20 modulates ciliary PDGFRα signaling by regulating the stability of Cbl E3 ubiquitin ligases. Journal of Cell Biology, 2018, 217, 151-161.	5.2	54
5	DNA methylation and differential gene regulation in photoreceptor cell death. Cell Death and Disease, 2014, 5, e1558-e1558.	6.3	47
6	Mutations in CEP78 Cause Cone-Rod Dystrophy and Hearing Loss Associated with Primary-Cilia Defects. American Journal of Human Genetics, 2016, 99, 770-776.	6.2	44
7	Isolated and Syndromic Retinal Dystrophy Caused by Biallelic Mutations in RCBTB1 , a Gene Implicated in Ubiquitination. American Journal of Human Genetics, 2016, 99, 470-480.	6.2	39
8	CEP78 functions downstream of CEP350 to control biogenesis of primary cilia by negatively regulating CP110 levels. ELife, 2021, 10, .	6.0	29
9	Mutations in the polyglutamylase gene <i>TTLL5</i> , expressed in photoreceptor cells and spermatozoa, are associated with cone-rod degeneration and reduced male fertility. Human Molecular Genetics, 2016, 25, ddw282.	2.9	27
10	A frequent variant in the Japanese population determines quasi-Mendelian inheritance of rare retinal ciliopathy. Nature Communications, 2019, 10, 2884.	12.8	21
11	Interactome analysis reveals that FAM161A, deficient in recessive retinitis pigmentosa, is a component of the Golgi-centrosomal network. Human Molecular Genetics, 2015, 24, 3359-3371.	2.9	19
12	Functional characterization of the first missense variant in <i>CEP78</i> , a founder allele associated with coneâ€rod dystrophy, hearing loss, and reduced male fertility. Human Mutation, 2020, 41, 998-1011.	2.5	15
13	Retinitis Pigmentosa: overâ€expression of antiâ€ageing protein Klotho in degenerating photoreceptors. Journal of Neurochemistry, 2013, 127, 868-879.	3.9	14
14	A novel missense variant in IDH3A causes autosomal recessive retinitis pigmentosa. Ophthalmic Genetics, 2019, 40, 177-181.	1.2	10
15	A large multiexonic genomic deletion within the <i><scp>ALMS1</scp></i> gene causes Alström syndrome in a consanguineous Pakistani family. Clinical Genetics, 2016, 89, 510-511.	2.0	5