
Jia Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4427053/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Base editing with a Cpf1–cytidine deaminase fusion. Nature Biotechnology, 2018, 36, 324-327.	17.5	333
2	Efficient base editing in methylated regions with a human APOBEC3A-Cas9 fusion. Nature Biotechnology, 2018, 36, 946-949.	17.5	190
3	Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing. Nature Communications, 2018, 9, 2338.	12.8	120
4	Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor. Cell Research, 2017, 27, 1289-1292.	12.0	99
5	BE-PLUS: a new base editing tool with broadened editing window and enhanced fidelity. Cell Research, 2018, 28, 855-861.	12.0	99
6	Repair of naturally occurring mismatches can induce mutations in flanking DNA. ELife, 2014, 3, e02001.	6.0	80
7	Highly efficient and precise base editing in discarded human tripronuclear embryos. Protein and Cell, 2017, 8, 776-779.	11.0	68
8	Cas12a Base Editors Induce Efficient and Specific Editing with Low DNA Damage Response. Cell Reports, 2020, 31, 107723.	6.4	62
9	APOBEC: From mutator to editor. Journal of Genetics and Genomics, 2017, 44, 423-437.	3.9	54
10	Highly efficient prime editing by introducing same-sense mutations in pegRNA or stabilizing its structure. Nature Communications, 2022, 13, 1669.	12.8	52
11	Eliminating base-editor-induced genome-wide and transcriptome-wide off-target mutations. Nature Cell Biology, 2021, 23, 552-563.	10.3	50
12	Development and Application of Base Editors. CRISPR Journal, 2019, 2, 91-104.	2.9	46
13	APOBEC3 induces mutations during repair of CRISPR–Cas9-generated DNA breaks. Nature Structural and Molecular Biology, 2018, 25, 45-52.	8.2	42
14	Genomic and Transcriptomic Analyses of Prime Editing Guide RNA–Independent Off-Target Effects by Prime Editors. CRISPR Journal, 2022, 5, 276-293.	2.9	31
15	Comparison of cytosine base editors and development of the BEable-GPS database for targeting pathogenic SNVs. Genome Biology, 2019, 20, 218.	8.8	23
16	One Prime for All Editing. Cell, 2019, 179, 1448-1450.	28.9	23
17	A Tale of Two Moieties: Rapidly Evolving CRISPR/Cas-Based Genome Editing. Trends in Biochemical Sciences, 2020, 45, 874-888.	7.5	23
18	Gene editing and its applications in biomedicine. Science China Life Sciences, 2022, 65, 660-700.	4.9	20

Jia Chen

#	Article	IF	CITATIONS
19	Breaking bad: The mutagenic effect of DNA repair. DNA Repair, 2015, 32, 43-51.	2.8	19
20	Knockout of circRNAs by base editing back-splice sites of circularized exons. Genome Biology, 2022, 23, 16.	8.8	16
21	Excess TNF- $\hat{1}$ ± in the blood activates monocytes with the potential to directly form cholesteryl ester-laden cells. Acta Biochimica Et Biophysica Sinica, 2015, 47, 899-907.	2.0	15
22	Efficient base editing in G/C-rich regions to model androgen insensitivity syndrome. Cell Research, 2019, 29, 174-176.	12.0	15
23	RNA secondary structures located in the interchromosomal region of human ACAT1 chimeric mRNA are required to produce the 56-kDa isoform. Cell Research, 2008, 18, 921-936.	12.0	14
24	To BE or not to BE, that is the question. Nature Biotechnology, 2019, 37, 520-522.	17.5	11
25	ACAT1 regulates the dynamics of free cholesterols in plasma membrane which leads to the APP-α-processing alteration. Acta Biochimica Et Biophysica Sinica, 2015, 47, gmv101.	2.0	8
26	CRISPR Adventures in China. CRISPR Journal, 2021, 4, 304-306.	2.9	0