Jeffrey Pierce

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4426823/jeffrey-pierce-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

209 9,133 49 90 h-index g-index citations papers 6.21 11,050 291 7.1 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
209	Future PM2.5 emissions from metal production to meet renewable energy demand. <i>Environmental Research Letters</i> , 2022 , 17, 044043	6.2	
208	Observations of particle number size distributions and new particle formation in six Indian locations. <i>Atmospheric Chemistry and Physics</i> , 2022 , 22, 4491-4508	6.8	1
207	Heterogeneous Nucleation Drives Particle Size Segregation in Sequential Ozone and Nitrate Radical Oxidation of Catechol. <i>Environmental Science & Environmental Science & Envi</i>	10.3	2
206	New Particle Formation and Growth to Climate-Relevant Aerosols at a Background Remote Site in the Western Himalaya. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2020JD033267	4.4	6
205	Associations Between Wildfire-Related PM and Intensive Care Unit Admissions in the United States, 2006-2015. <i>GeoHealth</i> , 2021 , 5, e2021GH000385	5	7
204	Dilution impacts on smoke aging: evidence in Biomass Burning Observation Project (BBOP) data. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 6839-6855	6.8	9
203	Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere. <i>Communications Earth & Environment</i> , 2021 , 2,	6.1	7
202	Improved estimates of preindustrial biomass burning reduce the magnitude of aerosol climate forcing in the Southern Hemisphere. <i>Science Advances</i> , 2021 , 7,	14.3	4
201	Empirical Insights Into the Fate of Ammonia in Western U.S. Wildfire Smoke Plumes. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2020JD033730	4.4	4
200	Daytime Oxidized Reactive Nitrogen Partitioning in Western U.S. Wildfire Smoke Plumes. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2020JD033484	4.4	18
199	Quantifying Proximity, Confinement, and Interventions in Disease Outbreaks: A Decision Support Framework for Air-Transported Pathogens. <i>Environmental Science & Environmental Science & Environmental</i>	9 ¹ 8 ^{0.3}	12
198	Evaluating Empirical Lightning Parameterizations in Global Atmospheric Models. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2020JD033695	4.4	1
197	Differential Cardiopulmonary Health Impacts of Local and Long-Range Transport of Wildfire Smoke <i>GeoHealth</i> , 2021 , 5, e2020GH000330	5	11
196	Factors controlling marine aerosol size distributions and their climate effects over the northwest Atlantic Ocean region. <i>Atmospheric Chemistry and Physics</i> , 2021 , 21, 1889-1916	6.8	5
195	Observation of sub-3nm particles and new particle formation at an urban location in India. <i>Atmospheric Environment</i> , 2021 , 256, 118460	5.3	3
194	A low-cost monitor for simultaneous measurement of fine particulate matter and aerosol optical depth [Part]B: Automation and design improvements. <i>Atmospheric Measurement Techniques</i> , 2021 , 14, 6023-6038	4	1
193	Quantifying the Health Benefits of Face Masks and Respirators to Mitigate Exposure to Severe Air Pollution. <i>GeoHealth</i> , 2021 , 5, e2021GH000482	5	2

(2020-2021)

192	Estimated Mortality and Morbidity Attributable to Smoke Plumes in the United States: Not Just a Western US Problem. <i>GeoHealth</i> , 2021 , 5, e2021GH000457	5	9
191	Particle Size Distribution Dynamics Can Help Constrain the Phase State of Secondary Organic Aerosol. <i>Environmental Science & Technology</i> , 2021 , 55, 1466-1476	10.3	9
190	A computationally efficient model to represent the chemistry, thermodynamics, and microphysics of secondary organic aerosols (simpleSOM): model development and application to pinene SOA. <i>Environmental Science Atmospheres</i> , 2021 , 1, 372-394		0
189	Estimating the Spread in Future Fine Dust Concentrations in the Southwest United States. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2019JD031735	4.4	2
188	Global Estimates and Long-Term Trends of Fine Particulate Matter Concentrations (1998-2018). <i>Environmental Science & Environmental Science & Environm</i>	10.3	143
187	Oxygenated Aromatic Compounds are Important Precursors of Secondary Organic Aerosol in Biomass-Burning Emissions. <i>Environmental Science & Environmental Science & Environment</i>	10.3	29
186	Secondary organic aerosol formation from evaporated biofuels: comparison to gasoline and correction for vapor wall losses. <i>Environmental Sciences: Processes and Impacts</i> , 2020 , 22, 1461-1474	4.3	8
185	Emissions and radiative impacts of sub-10 nm particles from biofuel and fossil fuel cookstoves. <i>Aerosol Science and Technology</i> , 2020 , 54, 1231-1243	3.4	1
184	Using Low-Cost Measurement Systems to Investigate Air Quality: A Case Study in Palapye, Botswana. <i>Atmosphere</i> , 2020 , 11, 583	2.7	2
183	Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 4607-4635	6.8	38
182	The association between wildfire smoke exposure and asthma-specific medical care utilization in Oregon during the 2013 wildfire season. <i>Journal of Exposure Science and Environmental Epidemiology</i> , 2020 , 30, 618-628	6.7	17
181	Comparing regional stove-usage patterns and using those patterns to model indoor air quality impacts. <i>Indoor Air</i> , 2020 , 30, 521-533	5.4	4
180	Response of Hurricane Harvey Trainfall to anthropogenic aerosols: A sensitivity study based on spectral bin microphysics with simulated aerosols. <i>Atmospheric Research</i> , 2020 , 242, 104965	5.4	5
179	Estimated Aerosol Health and Radiative Effects of the Residential Coal Ban in the Beijing-Tianjin-Hebei Region of China. <i>Aerosol and Air Quality Research</i> , 2020 , 20, 2332-2346	4.6	2
178	Vertical profiles of light absorption and scattering associated with black carbon particle fractions in the springtime Arctic above 79°N. Atmospheric Chemistry and Physics, 2020 , 20, 10545-10563	6.8	6
177	Rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western US. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 13319-13341	6.8	16
176	The potential role of organics in new particle formation and initial growth in the remote tropical upper troposphere. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 15037-15060	6.8	4
175	An evaluation of global organic aerosol schemes using airborne observations. <i>Atmospheric Chemistry and Physics</i> , 2020 , 20, 2637-2665	6.8	44

174	Simulating the forest fire plume dispersion, chemistry, and aerosol formation using SAM-ASP version 1.0. <i>Geoscientific Model Development</i> , 2020 , 13, 4579-4593	6.3	4	
173	Exploring new methods of estimating deposition using atmospheric concentration measurements: A modeling case study of ammonia downwind of a feedlot. <i>Agricultural and Forest Meteorology</i> , 2020 , 290, 107989	5.8	2	
172	Beyond SOx reductions from shipping: assessing the impact of NOx and carbonaceous-particle controls on human health and climate. <i>Environmental Research Letters</i> , 2020 , 15, 124046	6.2	4	
171	Measuring and modeling the primary organic aerosol volatility from a modern non-road diesel engine. <i>Atmospheric Environment</i> , 2020 , 223, 117221	5.3	3	
170	A Decadal Climatology of Chemical, Physical, and Optical Properties of Ambient Smoke in the Western and Southeastern United States. <i>Journal of Geophysical Research D: Atmospheres</i> , 2020 , 125, e2019JD031372	4.4	13	
169	Revisiting particle dry deposition and its role in radiative effect estimates. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 26076-26082	11.5	32	
168	The Relationship Between MAIAC Smoke Plume Heights and Surface PM. <i>Geophysical Research Letters</i> , 2020 , 47, e2020GL088949	4.9	5	
167	Outdoor air pollution in India is not only an urban problem. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 28640-28644	11.5	22	
166	Hazardous Air Pollutants in Fresh and Aged Western US Wildfire Smoke and Implications for Long-Term Exposure. <i>Environmental Science & Environmental & Environ</i>	10.3	26	
165	The contribution of black carbon to global ice nucleating particle concentrations relevant to mixed-phase clouds. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 22705-22711	11.5	25	
164	The relationship between monthly air pollution and violent crime across the United States. <i>Journal of Environmental Economics and Policy</i> , 2020 , 9, 188-205	1.8	13	
163	Past Variance and Future Projections of the Environmental Conditions Driving Western U.S. Summertime Wildfire Burn Area. <i>Earth& Future</i> , 2020 , 9, e2020EF001645	7.9	12	
162	An evaluation of global organic aerosol schemes using airborne observations 2019,		4	
161	Impact of Wildfire Smoke on Adverse Pregnancy Outcomes in Colorado, 2007-2015. <i>International Journal of Environmental Research and Public Health</i> , 2019 , 16,	4.6	51	
160	Characterization of Organic Aerosol across the Global Remote Troposphere: A comparison of ATom measurements and global chemistry models 2019 ,		1	
159	Contribution of Wildland-Fire Smoke to US PM and Its Influence on Recent Trends. <i>Environmental Science & Environmental Scienc</i>	10.3	70	
158	Effects of near-source coagulation of biomass burning aerosols on global predictions of aerosol size distributions and implications for aerosol radiative effects. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 6561-6577	6.8	17	
157	A Laboratory Assessment of 120 Air Pollutant Emissions from Biomass and Fossil Fuel Cookstoves. <i>Environmental Science & Environmental Science & Envir</i>	10.3	28	

(2018-2019)

156	More Than Emissions and Chemistry: Fire Size, Dilution, and Background Aerosol Also Greatly Influence Near-Field Biomass Burning Aerosol Aging. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 5589-5611	4.4	29
155	The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 3137-3160	6.8	51
154	The Associations Between Clinical Respiratory Outcomes and Ambient Wildfire Smoke Exposure Among Pediatric Asthma Patients at National Jewish Health, 2012-2015. <i>GeoHealth</i> , 2019 , 3, 146-159	5	14
153	Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian Arctic Archipelago. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 2787-281	2 6.8	25
152	Overview paper: New insights into aerosol and climate in the Arctic. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 2527-2560	6.8	85
151	Aging Effects on Biomass Burning Aerosol Mass and Composition: A Critical Review of Field and Laboratory Studies. <i>Environmental Science & Environmental Science & Environment</i>	10.3	58
150	A national burden assessment of estimated pediatric asthma emergency department visits that may be attributed to elevated ozone levels associated with the presence of smoke. <i>Environmental Monitoring and Assessment</i> , 2019 , 191, 269	3.1	5
149	Unprecedented Atmospheric Ammonia Concentrations Detected in the High Arctic From the 2017 Canadian Wildfires. <i>Journal of Geophysical Research D: Atmospheres</i> , 2019 , 124, 8178-8202	4.4	17
148	Evaluation of global simulations of aerosol particle and cloud condensation nuclei number, with implications for cloud droplet formation. <i>Atmospheric Chemistry and Physics</i> , 2019 , 19, 8591-8617	6.8	31
147	A large source of cloud condensation nuclei from new particle formation in the tropics. <i>Nature</i> , 2019 , 574, 399-403	50.4	75
146	The effect of pollution on crime: Evidence from data on particulate matter and ozone. <i>Journal of Environmental Economics and Management</i> , 2019 , 98, 102267	5.3	35
145	Air Toxics and Other Volatile Organic Compound Emissions from Unconventional Oil and Gas Development. <i>Environmental Science and Technology Letters</i> , 2019 , 6, 720-726	11	14
144	A low-cost monitor for simultaneous measurement of fine particulate matter and aerosol optical depth [Part 1: Specifications and testing. <i>Atmospheric Measurement Techniques</i> , 2019 , 12, 5431-5441	4	9
143	A low-cost monitor for measurement of fine particulate matter and aerosol optical depth [Part 2: Citizen-science pilot campaign in northern Colorado. <i>Atmospheric Measurement Techniques</i> , 2019 , 12, 6385-6399	4	11
142	Investigation of levoglucosan decay in wood smoke smog-chamber experiments: The importance of aerosol loading, temperature, and vapor wall losses in interpreting results. <i>Atmospheric Environment</i> , 2019 , 199, 224-232	5.3	12
141	Premature Mortality Due to PM Over India: Effect of Atmospheric Transport and Anthropogenic Emissions. <i>GeoHealth</i> , 2019 , 3, 2-10	5	42
140	Vertically resolved concentration and liquid water content of atmospheric nanoparticles at the US DOE Southern Great Plains site. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 311-326	6.8	21
139	Aerosol Optical Depth Over India. <i>Journal of Geophysical Research D: Atmospheres</i> , 2018 , 123, 3688-370.	34.4	44

138	Synthesis of the Southeast Atmosphere Studies: Investigating Fundamental Atmospheric Chemistry Questions. <i>Bulletin of the American Meteorological Society</i> , 2018 , 99, 547-567	6.1	50
137	Quantifying the Contribution to Uncertainty in Mortality Attributed to Household, Ambient, and Joint Exposure to PM From Residential Solid Fuel Use. <i>GeoHealth</i> , 2018 , 2, 25-39	5	28
136	The response of a simulated mesoscale convective system to increased aerosol pollution: Part I: Precipitation intensity, distribution, and efficiency. <i>Atmospheric Research</i> , 2018 , 199, 193-208	5.4	12
135	Machine Learning to Predict the Global Distribution of Aerosol Mixing State Metrics. <i>Atmosphere</i> , 2018 , 9, 15	2.7	14
134	Studying the impact of radioactive charging on the microphysical evolution and transport of radioactive aerosols with the TOMAS-RC v1 framework. <i>Journal of Environmental Radioactivity</i> , 2018 , 192, 150-159	2.4	0
133	The Firepower Sweep Test: A novel approach to cookstove laboratory testing. <i>Indoor Air</i> , 2018 , 28, 936-	944	16
132	Improving the Quality of Heavy Precipitation Estimates from Satellite Passive Microwave Rainfall Retrievals. <i>Journal of Hydrometeorology</i> , 2018 , 19, 69-85	3.7	10
131	Future Fire Impacts on Smoke Concentrations, Visibility, and Health in the Contiguous United States. <i>GeoHealth</i> , 2018 , 2, 229-247	5	96
130	Effects of Near-Source Coagulation of Biomass Burning Aerosols on Global Predictions of Aerosol Size Distributions and Implications for Aerosol Radiative Effects 2018 ,		1
129	Ambient Particulate Matter Size Distributions Drive Regional and Global Variability in Particle Deposition in the Respiratory Tract. <i>GeoHealth</i> , 2018 , 2, 298-312	5	16
128	Environmental Conditions, Ignition Type, and Air Quality Impacts of Wildfires in the Southeastern and Western United States. <i>Earth Future</i> , 2018 , 6, 1442-1456	7.9	19
127	The potential role of methanesulfonic acid (MSA) in aerosol formation and growth and the associated radiative forcings 2018 ,		1
126	Particle wall-loss correction methods in smog chamber experiments. <i>Atmospheric Measurement Techniques</i> , 2018 , 11, 6577-6588	4	29
125	New insights into aerosol and climate in the Arctic 2018,		3
124	Constraining nucleation, condensation, and chemistry in oxidation flow reactors using size-distribution measurements and aerosol microphysical modeling. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 12433-12460	6.8	10
123	Arctic marine secondary organic aerosol contributes significantly to summertime particle size distributions in the Canadian Arctic Archipelago 2018 ,		1
122	Size-resolved mixing state of black carbon in the Canadian high Arctic and implications for simulated direct radiative effect. <i>Atmospheric Chemistry and Physics</i> , 2018 , 18, 11345-11361	6.8	22
121	Field measurements of solid-fuel cookstove emissions from uncontrolled cooking in China, Honduras, Uganda, and India. <i>Atmospheric Environment</i> , 2018 , 190, 116-125	5.3	34

120	Interactions between the MJO, Aerosols, and Convection over the Central Indian Ocean. <i>Journals of the Atmospheric Sciences</i> , 2017 , 74, 353-374	2.1	3
119	Important global and regional differences in aerosol cloud-albedo effect estimates between simulations with and without prognostic aerosol microphysics. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 4003-4018	4.4	24
118	Spatial and temporal estimates of population exposure to wildfire smoke during the Washington state 2012 wildfire season using blended model, satellite, and in situ data. <i>GeoHealth</i> , 2017 , 1, 106-121	5	54
117	Comparison of wildfire smoke estimation methods and associations with cardiopulmonary-related hospital admissions. <i>GeoHealth</i> , 2017 , 1, 122-136	5	67
116	Studying the Impact of Radioactive Charging on the Microphysical Evolution and Transport of Radioactive Aerosols with the TOMAS-RC v1 framework 2017 ,		1
115	A global lightning parameterization based on statistical relationships among environmental factors, aerosols, and convective clouds in the TRMM climatology. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 7461-7492	4.4	24
114	Cosmic rays, aerosols, clouds, and climate: Recent findings from the CLOUD experiment. <i>Journal of Geophysical Research D: Atmospheres</i> , 2017 , 122, 8051-8055	4.4	17
113	Boundary layer and free-tropospheric dimethyl sulfide in the Arctic spring and summer. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 8757-8770	6.8	7
112	Organic Condensation and Particle Growth to CCN Sizes in the Summertime Marine Arctic Is Driven by Materials More Semivolatile Than at Continental Sites. <i>Geophysical Research Letters</i> , 2017 , 44, 10,725	5-4r0,73	433
111	Constraining uncertainties in particle-wall deposition correction during SOA formation in chamber experiments. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 2297-2310	6.8	41
110	Secondary organic aerosol formation in biomass-burning plumes: theoretical analysis of lab studies and ambient plumes. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 5459-5475	6.8	50
109	Status update: is smoke on your mind? Using social media to assess smoke exposure. <i>Atmospheric Chemistry and Physics</i> , 2017 , 17, 7541-7554	6.8	17
108	Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. <i>Reviews of Geophysics</i> , 2017 , 55, 509-559	23.1	359
107	Constraining uncertainties in particle wall-deposition correction during SOA formation in chamber experiments 2016 ,		1
106	Software to analyze the relationship between aerosol, clouds, and precipitation: SAMAC. <i>Atmospheric Measurement Techniques</i> , 2016 , 9, 619-630	4	2
105	Contribution of Arctic seabird-colony ammonia to atmospheric particles and cloud-albedo radiative effect. <i>Nature Communications</i> , 2016 , 7, 13444	17.4	65
104	Ammonia in the summertime Arctic marine boundary layer: sources, sinks, and implications. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 1937-1953	6.8	48
103	Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 3525-3561	6.8	58

102	The aerosol radiative effects of uncontrolled combustion of domestic waste. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 6771-6784	6.8	21
101	Multiple new-particle growth pathways observed at the US DOE Southern Great Plains field site. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 9321-9348	6.8	24
100	Processes controlling the annual cycle of Arctic aerosol number and size distributions. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 3665-3682	6.8	84
99	Source attribution of aerosol size distributions and model evaluation using Whistler Mountain measurements and GEOS-Chem-TOMAS simulations. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 383-3	96 ⁸	8
98	The evolution of biomass-burning aerosol size distributions due to coagulation: dependence on fire and meteorological details and parameterization. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 7709-77	2 ⁶ .8	42
97	Global burden of mortalities due to chronic exposure to ambient PM 2.5 from open combustion of domestic waste. <i>Environmental Research Letters</i> , 2016 , 11, 124022	6.2	30
96	Ice-nucleating particle emissions from photochemically aged diesel and biodiesel exhaust. <i>Geophysical Research Letters</i> , 2016 , 43, 5524-5531	4.9	37
95	The evolution of biomass-burning aerosol size distributions due to coagulation: dependence on fire and meteorological details and parameterization 2016 ,		1
94	Secondary organic aerosol formation in biomass-burning plumes: Theoretical analysis of lab studies and ambient plumes 2016 ,		1
93	Environmental controls on storm intensity and charge structure in multiple regions of the continental United States. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 6575-6596	4.4	60
92	Simultaneous influences of thermodynamics and aerosols on deep convection and lightning in the tropics. <i>Journal of Geophysical Research D: Atmospheres</i> , 2015 , 120, 6207-6231	4.4	50
91	Investigation of particle and vapor wall-loss effects on controlled wood-smoke smog-chamber experiments. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 11027-11045	6.8	33
90	Aged boreal biomass-burning aerosol size distributions from BORTAS 2011. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 1633-1646	6.8	34
89	The importance of interstitial particle scavenging by cloud droplets in shaping the remote aerosol size distribution and global aerosol-climate effects. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 6147-6	5658 5158	27
88	A comparison of four receptor models used to quantify the boreal wildfire smoke contribution to surface PM_{2.5} in Halifax, Nova Scotia during the BORTAS-B experiment. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 815-827	6.8	16
87	Uncertainties in global aerosols and climate effects due to biofuel emissions. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 8577-8596	6.8	50
86	Impact of gas-to-particle partitioning approaches on the simulated radiative effects of biogenic secondary organic aerosol. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 12989-13001	6.8	28
85	Boundary layer new particle formation over East Antarctic sea ice [possible Hg-driven nucleation?. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 13339-13364	6.8	19

(2013-2015)

84	Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation. <i>Atmospheric Chemistry and Physics</i> , 2015 , 15, 2247-2268	6.8	11
83	Assessing the influence of secondary organic versus primary carbonaceous aerosols on long-range atmospheric polycyclic aromatic hydrocarbon transport. <i>Environmental Science & Environmental Science </i>	10.3	32
82	Spatially and seasonally resolved estimate of the ratio of organic mass to organic carbon. <i>Atmospheric Environment</i> , 2014 , 87, 34-40	5.3	53
81	A simple way to improve the diurnal cycle in convective rainfall over land in climate models. <i>Journal of Geophysical Research D: Atmospheres</i> , 2014 , 119, 2113-2130	4.4	19
80	The contribution of plume-scale nucleation to global and regional aerosol and CCN concentrations: evaluation and sensitivity to emissions changes. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 13661-136	5 7 8	11
79	Analysis of feedbacks between nucleation rate, survival probability and cloud condensation nuclei formation. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 5577-5597	6.8	55
78	Interpreting aerosol lifetimes using the GEOS-Chem model and constraints from radionuclide measurements. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 4313-4325	6.8	25
77	New-particle formation, growth and climate-relevant particle production in Egbert, Canada: analysis from 1 year of size-distribution observations. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 8647	,68663 -8663	40
76	A case study of aerosol scavenging in a biomass burning plume over eastern Canada during the 2011 BORTAS field experiment. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 8449-8460	6.8	15
75	Diesel particulate matter emission factors and air quality implications from inBervice rail in Washington State, USA. <i>Atmospheric Pollution Research</i> , 2014 , 5, 344-351	4.5	15
74	Role of atmospheric ammonia in particulate matter formation in Houston during summertime. <i>Atmospheric Environment</i> , 2013 , 77, 893-900	5.3	53
73	Large contribution of natural aerosols to uncertainty in indirect forcing. <i>Nature</i> , 2013 , 503, 67-71	50.4	614
72	A simple model of global aerosol indirect effects. <i>Journal of Geophysical Research D: Atmospheres</i> , 2013 , 118, 6688-6707	4.4	47
71	Toward resolution-independent dust emissions in global models: Impacts on the seasonal and spatial distribution of dust. <i>Geophysical Research Letters</i> , 2013 , 40, 2873-2877	4.9	50
70	Reduced efficacy of marine cloud brightening geoengineering due to in-plume aerosol coagulation: parameterization and global implications. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 10385-10396	6.8	16
69	Understanding global secondary organic aerosol amount and size-resolved condensational behavior. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 11519-11534	6.8	60
68	Weak global sensitivity of cloud condensation nuclei and the aerosol indirect effect to Criegee + SO₂ chemistry. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 3163-3176	6.8	58
67	Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) experiment: design, execution and science overview. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 6239-6261	6.8	45

66	Identifying the sources driving observed PM_{2.5} temporal variability over Halifax, Nova Scotia, during BORTAS-B. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 7199-7213	6.8	37
65	Semi-empirical parameterization of size-dependent atmospheric nanoparticle growth in continental environments. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 7665-7682	6.8	21
64	Corrigendum to "The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei" published in Atmos. Chem. Phys., 13, 88798914, 2013. Atmospheric Chemistry and Physics, 2013, 13, 9375-9377	6.8	2
63	A parameterization of sub-grid particle formation in sulfur-rich plumes for global- and regional-scale models. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 12117-12133	6.8	14
62	Formation and growth of nucleated particles into cloud condensation nuclei: model measurement comparison. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 7645-7663	6.8	67
61	The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 8879-8914	6.8	172
60	Representation of nucleation mode microphysics in a global aerosol model with sectional microphysics. <i>Geoscientific Model Development</i> , 2013 , 6, 1221-1232	6.3	31
59	Dimethyl sulfide control of the clean summertime Arctic aerosol and cloud. <i>Elementa</i> , 2013 , 1,	3.6	83
58	Cloud condensation nuclei droplet growth kinetics of ultrafine particles during anthropogenic nucleation events. <i>Atmospheric Environment</i> , 2012 , 47, 389-398	5.3	10
57	The contribution of organics to atmospheric nanoparticle growth. <i>Nature Geoscience</i> , 2012 , 5, 453-458	18.3	282
56	Uncertainty associated with convective wet removal of entrained aerosols in a global climate model. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 10725-10748	6.8	37
55	The effect of model spatial resolution on Secondary Organic Aerosol predictions: a case study at Whistler, BC, Canada. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 10911-10923	6.8	15
54	The effect of coal-fired power-plant SO₂ and NO_x control technologies on aerosol nucleation in the source plumes. <i>Atmospheric Chemistry and Physics</i> , 2012, 12, 11519-11531	6.8	49
53	Nucleation and condensational growth to CCN sizes during a sustained pristine biogenic SOA event in a forested mountain valley. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 3147-3163	6.8	106
52	Nucleation and growth of sulfate aerosol in coal-fired power plant plumes: sensitivity to	6.8	59
	background aerosol and meteorology. Atmospheric Chemistry and Physics, 2012 , 12, 189-206		
51	Theoretical constraints on pure vapor-pressure driven condensation of organics to ultrafine particles. <i>Geophysical Research Letters</i> , 2011 , 38, n/a-n/a	4.9	88
51 50	Theoretical constraints on pure vapor-pressure driven condensation of organics to ultrafine		

48	Cosmic rays, aerosol formation and cloud-condensation nuclei: sensitivities to model uncertainties. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 4001-4013	6.8	41
47	Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 9019-9036	6.8	132
46	Volatility of secondary organic aerosol from the ozonolysis of monoterpenes. <i>Atmospheric Environment</i> , 2011 , 45, 2443-2452	5.3	53
45	Detecting thin cirrus in Multiangle Imaging Spectroradiometer aerosol retrievals. <i>Journal of Geophysical Research</i> , 2010 , 115,		28
44	Efficient formation of stratospheric aerosol for climate engineering by emission of condensible vapor from aircraft. <i>Geophysical Research Letters</i> , 2010 , 37, n/a-n/a	4.9	93
43	Equilibration time scales of organic aerosol inside thermodenuders: Evaporation kinetics versus thermodynamics. <i>Atmospheric Environment</i> , 2010 , 44, 597-607	5.3	122
42	A Computationally Efficient Aerosol Nucleation/ Condensation Method: Pseudo-Steady-State Sulfuric Acid. <i>Aerosol Science and Technology</i> , 2009 , 43, 216-226	3.4	46
41	Mass spectra deconvolution of low, medium, and high volatility biogenic secondary organic aerosol. <i>Environmental Science & Environmental Science & En</i>	10.3	67
40	Parameterization of the effect of sub-grid scale aerosol dynamics on aerosol number emission rates. <i>Journal of Aerosol Science</i> , 2009 , 40, 385-393	4.3	33
39	Can cosmic rays affect cloud condensation nuclei by altering new particle formation rates?. <i>Geophysical Research Letters</i> , 2009 , 36,	4.9	108
38	Uncertainty in global CCN concentrations from uncertain aerosol nucleation and primary emission rates. <i>Atmospheric Chemistry and Physics</i> , 2009 , 9, 1339-1356	6.8	265
37	Constraining Particle Evolution from Wall Losses, Coagulation, and Condensation-Evaporation in Smog-Chamber Experiments: Optimal Estimation Based on Size Distribution Measurements. <i>Aerosol Science and Technology</i> , 2008 , 42, 1001-1015	3.4	77
36	Laboratory studies of H ₂ SO ₄ /H ₂ O binary homogeneous nucleation from the SO ₂ +OH reaction: evaluation of the	6.8	87
35	experimental setup and preliminary results. <i>Atmospheric Chemistry and Physics</i> , 2008 , 8, 4997-5016 Organic aerosol formation from photochemical oxidation of diesel exhaust in a smog chamber. <i>Environmental Science & Diesel amp; Technology</i> , 2007 , 41, 6969-75	10.3	181
34	Rethinking organic aerosols: semivolatile emissions and photochemical aging. <i>Science</i> , 2007 , 315, 1259-	63 3.3	1452
33	Contribution of primary carbonaceous aerosol to cloud condensation nuclei: processes and uncertainties evaluated with a global aerosol microphysics model. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 5447-5466	6.8	102
32	Efficiency of cloud condensation nuclei formation from ultrafine particles. <i>Atmospheric Chemistry and Physics</i> , 2007 , 7, 1367-1379	6.8	155
31	Global evaluation of CCN formation by direct emission of sea salt and growth of ultrafine sea salt. Journal of Geophysical Research, 2006, 111,		173

30	Quantifying proximity, confinement, and interventions in disease outbreaks: a decision support framework for air-transported pathogens	1
29	Dilution impacts on smoke aging: Evidence in BBOP data	2
28	Quantification of the volatility of secondary organic compounds in ultrafine particles during nucleation events	3
27	Cosmic rays, aerosol formation and cloud-condensation nuclei: sensitivities to model uncertainties	1
26	Organic condensation 🖟 vital link connecting aerosol formation to climate forcing	2
25	Formation and growth of nucleated particles: observational constraints on cloud condensation nuclei budgets	3
24	The effect of model spatial resolution on Secondary Organic Aerosol predictions: a case study at Whistler, BC, Canada	1
23	Weak sensitivity of cloud condensation nuclei and the aerosol indirect effect to Criegee + SO ₂ chemistry	2
22	Reduced efficacy of marine cloud brightening geoengineering due to in-plume aerosol coagulation: parameterization and global implications	1
21	Understanding and constraining global secondary organic aerosol amount and size-resolved condensational behavior	3
20	A parameterization of sub-grid particle formation in sulphur-rich plumes for global and regional-scale models	2
19	Analysis of feedbacks between nucleation rate, survival probability and cloud condensation nuclei formation	1
18	Interpreting aerosol lifetimes using the GEOS-Chem model and constraints from radionuclide measurements	2
17	Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS) experiment: design, execution and science overview	8
16	Identifying the sources driving observed PM _{2.5} variability over Halifax, Nova Scotia, during BORTAS-B	3
15	The magnitude and causes of uncertainty in global model simulations of cloud condensation nuclei	10
14	Formation and growth of nucleated particles into cloud condensation nuclei: model-measurement comparison	n ₄
13	The contribution of plume-scale nucleation to global and regional aerosol and CCN concentrations: evaluation and sensitivity to emissions changes	2

LIST OF PUBLICATIONS

12	Aged boreal biomass burning aerosol size distributions from BORTAS 2011	2
11	A case study of aerosol depletion in a biomass burning plume over Eastern Canada during the 2011 BORTAS field experiment	3
10	New-particle formation, growth and climate-relevant particle production in Egbert, Canada: analysis from one year of size-distribution observations	2
9	Uncertainties in global aerosols and climate effects due to biofuel emissions	4
8	Boundary layer new particle formation over East Antarctic sea ice [possible Hg driven nucleation?	2
7	Evaluation of observed and modelled aerosol lifetimes using radioactive tracers of opportunity and an ensemble of 19 global models	3
6	Source attribution of aerosol size distributions and model evaluation using Whistler Mountain measurements and GEOS-Chem-TOMAS simulations	1
5	Processes controlling the seasonal cycle of Arctic aerosol number and size distributions	4
4	Ammonia in the summertime Arctic marine boundary layer: sources, sinks and implications	5
3	Uncertainty in global CCN concentrations from uncertain aerosol nucleation and primary emission rates	3
2	The importance of interstitial particle scavenging by cloud droplets in shaping the remote aerosol size distribution and global aerosol-climate effects	1
1	Semi-empirical parameterization of size-dependent atmospheric nanoparticle growth in continental environments	1