R Lee Mosley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4426720/publications.pdf

Version: 2024-02-01

109264 95218 5,618 77 35 68 citations h-index g-index papers 78 78 78 6148 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Prodrug Therapies for Infectious and Neurodegenerative Diseases. Pharmaceutics, 2022, 14, 518.	2.0	3
2	Europium-Doped Cerium Oxide Nanoparticles for Microglial Amyloid Beta Clearance and Homeostasis. ACS Chemical Neuroscience, 2022, 13, 1232-1244.	1.7	16
3	Interleukin-2 expands neuroprotective regulatory T cells in Parkinson's disease. , 2022, .		3
4	Monocyte biomarkers define sargramostim treatment outcomes for Parkinson's disease. Clinical and Translational Medicine, 2022, 12, .	1.7	11
5	Development of an extended half-life GM-CSF fusion protein for Parkinson's disease. Journal of Controlled Release, 2022, 348, 951-965.	4.8	10
6	Granulocyte-macrophage colony-stimulating factor mRNA and Neuroprotective Immunity in Parkinson's disease. Biomaterials, 2021, 272, 120786.	5.7	26
7	Safety, tolerability, and immune-biomarker profiling for year-long sargramostim treatment of Parkinson's disease. EBioMedicine, 2021, 67, 103380.	2.7	23
8	The Immunopathobiology of SARS-CoV-2 Infection. FEMS Microbiology Reviews, 2021, 45, .	3.9	9
9	Humanized Mice for Infectious and Neurodegenerative disorders. Retrovirology, 2021, 18, 13.	0.9	20
10	Defining the Innate Immune Responses for SARS-CoV-2-Human Macrophage Interactions. Frontiers in Immunology, 2021, 12, 741502.	2.2	28
11	CRISPR-Cas9 Mediated Exonic Disruption for HIV-1 Elimination. EBioMedicine, 2021, 73, 103678.	2.7	23
12	CD4+ effector T cells accelerate Alzheimer's disease in mice. Journal of Neuroinflammation, 2021, 18, 272.	3.1	48
13	CD4+ T cell effector activities accelerate Alzheimer's disease pathologies Alzheimer's and Dementia, 2021, 17 Suppl 3, e052738.	0.4	O
14	Rod-shape theranostic nanoparticles facilitate antiretroviral drug biodistribution and activity in human immunodeficiency virus susceptible cells and tissues. Theranostics, 2020, 10, 630-656.	4.6	27
15	Harnessing regulatory T cell neuroprotective activities for treatment of neurodegenerative disorders. Molecular Neurodegeneration, 2020, 15, 32.	4.4	57
16	Neuroprotective Activities of Long-Acting Granulocyte–Macrophage Colony-Stimulating Factor (mPDM608) in 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine-Intoxicated Mice. Neurotherapeutics, 2020, 17, 1861-1877.	2.1	17
17	Immunotherapy for Parkinson's disease. Neurobiology of Disease, 2020, 137, 104760.	2.1	57
18	A year-long extended release nanoformulated cabotegravir prodrug. Nature Materials, 2020, 19, 910-920.	13.3	66

#	Article	IF	Citations
19	Neuroprotective Immunity for Neurodegenerative and Neuroinfectious Diseases. , 2020, , 335-370.		О
20	Sequential LASER ART and CRISPR Treatments Eliminate HIV-1 in a Subset of Infected Humanized Mice. Nature Communications, 2019, 10, 2753.	5.8	222
21	A Synthetic Agonist to Vasoactive Intestinal Peptide Receptor-2 Induces Regulatory T Cell Neuroprotective Activities in Models of Parkinson's Disease. Frontiers in Cellular Neuroscience, 2019, 13, 421.	1.8	32
22	Persistent EcoHIV infection induces nigral degeneration in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-intoxicated mice. Journal of NeuroVirology, 2018, 24, 398-410.	1.0	11
23	Creation of a nanoformulated cabotegravir prodrug with improved antiretroviral profiles. Biomaterials, 2018, 151, 53-65.	5.7	77
24	Role of the EHD Family of Endocytic Recycling Regulators for TCR Recycling and T Cell Function. Journal of Immunology, 2018, 200, 483-499.	0.4	13
25	Glatiramer Acetate., 2018,,.		0
26	Bioimaging predictors of rilpivirine biodistribution and antiretroviral activities. Biomaterials, 2018, 185, 174-193.	5.7	27
27	URMC-099 facilitates amyloid- \hat{l}^2 clearance in a murine model of Alzheimer \hat{a} \in Ms disease. Journal of Neuroinflammation, 2018, 15, 137.	3.1	36
28	Tolerogenic bone marrow-derived dendritic cells induce neuroprotective regulatory T cells in a model of Parkinson's disease. Molecular Neurodegeneration, 2018, 13, 26.	4.4	39
29	A mature macrophage is a principal HIV-1 cellular reservoir in humanized mice after treatment with long acting antiretroviral therapy. Retrovirology, 2017, 14, 17.	0.9	94
30	Therapeutic Strategies in Neurodegenerative Diseases. , 2017, , 681-711.		2
31	Immunotherapies for Movement Disorders: Parkinson's Disease and Amyotrophic Lateral Sclerosis. , 2017, , 767-797.		1
32	T cells and Parkinson's disease. Lancet Neurology, The, 2017, 16, 769-771.	4.9	22
33	Evaluation of the safety and immunomodulatory effects of sargramostim in a randomized, double-blind phase 1 clinical Parkinson's disease trial. Npj Parkinson's Disease, 2017, 3, 10.	2.5	98
34	Manganese-Enhanced Magnetic Resonance Imaging for Detection of Vasoactive Intestinal Peptide Receptor 2 Agonist Therapy in a Model of Parkinson's Disease. Neurotherapeutics, 2016, 13, 635-646.	2.1	24
35	Cellular Responses and Tissue Depots for Nanoformulated Antiretroviral Therapy. PLoS ONE, 2015, 10, e0145966.	1.1	13
36	A Perspective on Roles Played by Innate and Adaptive Immunity in the Pathobiology of Neurodegenerative Disorders. Journal of NeuroImmune Pharmacology, 2015, 10, 645-650.	2.1	36

#	Article	lF	Citations
37	Selective VIP Receptor Agonists Facilitate Immune Transformation for Dopaminergic Neuroprotection in MPTP-Intoxicated Mice. Journal of Neuroscience, 2015, 35, 16463-16478.	1.7	68
38	Pharmacodynamics of folic acid receptor targeted antiretroviral nanotherapy in HIV-1-infected humanized mice. Antiviral Research, 2015, 120, 85-88.	1.9	23
39	Granulocyte-Macrophage Colony Stimulating Factor Exerts Protective and Immunomodulatory Effects in Cortical Trauma. Journal of Neuroimmunology, 2015, 278, 162-173.	1.1	30
40	Nanoneuromedicines for degenerative, inflammatory, and infectious nervous system diseases. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 751-767.	1.7	98
41	Adaptive Immunity in Neurodegenerative and Neuropsychological Disorders. Journal of NeuroImmune Pharmacology, 2015, 10, 522-527.	2.1	9
42	Dual destructive and protective roles of adaptive immunity in neurodegenerative disorders. Translational Neurodegeneration, 2014, 3, 25.	3.6	65
43	X-Ray, Positron Emission, and Single Photon Emission Tomographic Bioimaging. Springer Protocols, 2014, , 271-292.	0.1	0
44	Innate and Adaptive Immune-Mediated Neuroinflammation and Neurodegeneration in Parkinson's Disease. , 2014, , 119-142.		1
45	GM-CSF induces neuroprotective and anti-inflammatory responses in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine intoxicated mice. Journal of Neuroimmunology, 2013, 265, 1-10.	1.1	90
46	Inflammation and Adaptive Immunity in Parkinson's Disease. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a009381-a009381.	2.9	221
47	CD4+ Regulatory and Effector/Memory T Cell Subsets Profile Motor Dysfunction in Parkinson's Disease. Journal of NeuroImmune Pharmacology, 2012, 7, 927-938.	2.1	255
48	Pharmacodynamic and Antiretroviral Activities of Combination Nanoformulated Antiretrovirals in HIV-1â€"Infected Human Peripheral Blood Lymphocyteâ€"Reconstituted Mice. Journal of Infectious Diseases, 2012, 206, 1577-1588.	1.9	62
49	Comparative manufacture and cell-based delivery of antiretroviral nanoformulations. International Journal of Nanomedicine, 2011, 6, 3393.	3.3	37
50	Analyses of nanoformulated antiretroviral drug charge, size, shape and content for uptake, drug release and antiviral activities in human monocyte-derived macrophages. Journal of Controlled Release, 2011, 150, 204-211.	4.8	107
51	Brain ingress of regulatory T cells in a murine model of HIV-1 encephalitisa~†. Journal of Neuroimmunology, 2011, 230, 33-41.	1.1	28
52	Adaptive immune regulation of glial homeostasis as an immunization strategy for neurodegenerative diseases. Journal of Neurochemistry, 2010, 114, 1261-1276.	2.1	36
53	Regulatory T Cells Attenuate Th17 Cell-Mediated Nigrostriatal Dopaminergic Neurodegeneration in a Model of Parkinson's Disease. Journal of Immunology, 2010, 184, 2261-2271.	0.4	346
54	Neuroprotective Activities of CD4+CD25+ Regulatory T Cells. NeuroImmune Biology, 2010, 9, 197-210.	0.2	0

#	Article	IF	CITATIONS
55	Macrophage delivery of therapeutic nanozymes in a murine model of Parkinson's disease. Nanomedicine, 2010, 5, 379-396.	1.7	154
56	Control of neuroinflammation as a therapeutic strategy for amyotrophic lateral sclerosis and other neurodegenerative disorders. Experimental Neurology, 2010, 222, 1-5.	2.0	25
57	Innate and Adaptive Immunity for the Pathobiology of Parkinson's Disease. Antioxidants and Redox Signaling, 2009, 11, 2151-2166.	2.5	114
58	Nitrated \hat{l}_{\pm} -Synuclein-Induced Alterations in Microglial Immunity Are Regulated by CD4+ T Cell Subsets. Journal of Immunology, 2009, 182, 4137-4149.	0.4	177
59	NanoART synthesis, characterization, uptake, release and toxicology for human monocyte–macrophage drug delivery. Nanomedicine, 2009, 4, 903-917.	1.7	116
60	CD 4+ T cells in the pathobiology of neurodegenerative disorders. Journal of Neuroimmunology, 2009, 211, 3-15.	1.1	48
61	Proteomic Studies of Nitrated Alpha-Synuclein Microglia Regulation by CD4+CD25+ T Cells. Journal of Proteome Research, 2009, 8, 3497-3511.	1.8	78
62	Nitrated alphaâ€synucleinâ€activated microglial profiling for Parkinson's disease. Journal of Neurochemistry, 2008, 104, 1504-1525.	2.1	195
63	Nitrated α–Synuclein Immunity Accelerates Degeneration of Nigral Dopaminergic Neurons. PLoS ONE, 2008, 3, e1376.	1.1	311
64	Multidimensional protein fractionation using ProteomeLab PF 2Dâ,,¢ for profiling amyotrophic lateral sclerosis immunity: A preliminary report. Proteome Science, 2008, 6, 26.	0.7	20
65	Proteomic Modeling for HIV-1 Infected Microglia-Astrocyte Crosstalk. PLoS ONE, 2008, 3, e2507.	1.1	46
66	Adaptive Immune Neuroprotection in G93A-SOD1 Amyotrophic Lateral Sclerosis Mice. PLoS ONE, 2008, 3, e2740.	1.1	174
67	Glatiramer acetate immunization induces specific antibody and cytokine responses in ALS patients. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 2007, 8, 235-242.	2.3	19
68	A Macrophageâ^'Nanozyme Delivery System for Parkinson's Disease. Bioconjugate Chemistry, 2007, 18, 1498-1506.	1.8	177
69	Neuroprotective activities of CD4+CD25+ regulatory T cells in an animal model of Parkinson's disease. Journal of Leukocyte Biology, 2007, 82, 1083-1094.	1.5	323
70	Development of a macrophage-based nanoparticle platform for antiretroviral drug delivery. Blood, 2006, 108, 2827-2835.	0.6	241
71	Neuroinflammation, oxidative stress, and the pathogenesis of Parkinson's disease. Clinical Neuroscience Research, 2006, 6, 261-281.	0.8	305
72	Quantitative 1H Magnetic Resonance Spectroscopic Imaging Determines Therapeutic Immunization Efficacy in an Animal Model of Parkinson's Disease. Journal of Neuroscience, 2005, 25, 1691-1700.	1.7	76

R LEE MOSLEY

#	Article	IF	CITATIONS
73	Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson's disease. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9435-9440.	3.3	299
74	Neuroimaging and Proteomic Tracking of Neurodegeneration in MPTPâ€Treated Mice. Annals of the New York Academy of Sciences, 2003, 991, 319-321.	1.8	2
75	Flt3 ligand augmentation of T cell mitogenesis and expansion of type 1 effector/memory T cells. International Immunopharmacology, 2002, 2, 925-940.	1.7	10
76	Flt3 ligand and conjugation to IL-1 \hat{l}^2 peptide as adjuvants for a type 1, T-cell response to an HIV p17 gag vaccine. Vaccine, 2002, 20, 2358-2368.	1.7	14
77	Comparison of the Hematopoietic Activity of flt-3 Ligand and Granulocyte-Macrophage Colony-Stimulating Factor Acting Alone or in Combination. Journal of Hematotherapy and Stem Cell Research, 2000, 9, 711-720.	1.8	23