Nobuyuki Ichikuni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4426461/publications.pdf Version: 2024-02-01

		147801	128289
124	4,017	31	60
papers	citations	h-index	g-index
133	133	133	5109
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effect of Electronic Structures of Au Clusters Stabilized by Poly(<i>N</i> -vinyl-2-pyrrolidone) on Aerobic Oxidation Catalysis. Journal of the American Chemical Society, 2009, 131, 7086-7093.	13.7	615
2	Colloidal Gold Nanoparticles as Catalyst for Carbonâ^'Carbon Bond Formation:Â Application to Aerobic Homocoupling of Phenylboronic Acid in Water. Langmuir, 2004, 20, 11293-11296.	3.5	356
3	Capillary Condensation of N2 on Multiwall Carbon Nanotubes. Journal of Physical Chemistry B, 1998, 102, 4689-4692.	2.6	156
4	Microfluidic Synthesis and Catalytic Application of PVP-Stabilized, â^¼1 nm Gold Clusters. Langmuir, 2008, 24, 11327-11330.	3.5	132
5	Opening Mechanism of Internal Nanoporosity of Single-Wall Carbon Nanohorn. Journal of Physical Chemistry B, 2005, 109, 14319-14324.	2.6	130
6	A New Binding Motif of Sterically Demanding Thiolates on a Gold Cluster. Journal of the American Chemical Society, 2012, 134, 14295-14297.	13.7	122
7	Highly efficient and selective hydrogenation of unsaturated carbonyl compounds using Ni–Sn alloy catalysts. Catalysis Science and Technology, 2012, 2, 2139.	4.1	116
8	Hydrogenation of CO2 over sprayed Ru/TiO2 fine particles and strong metal–support interaction. Applied Catalysis A: General, 1999, 180, 227-235.	4.3	106
9	Selective Photocatalytic Oxidation of Alcohols to Aldehydes in Water by TiO ₂ Partially Coated with WO ₃ . Chemistry - A European Journal, 2011, 17, 9816-9824.	3.3	99
10	Preparation of Au/TiO2 catalysts by suspension spray reaction method and their catalytic property for CO oxidation. Applied Catalysis A: General, 2003, 246, 87-95.	4.3	94
11	Selective synthesis of organogold magic clusters Au54(Cî€,CPh)26. Chemical Communications, 2012, 48, 6085.	4.1	91
12	Structure and catalytic combustion activity of atomically dispersed Pt species at MgO surface. Applied Catalysis A: General, 1999, 188, 313-324.	4.3	86
13	Catalytic properties of sprayed Ru/Al2O3 and promoter effects of alkali metals in CO2 hydrogenation. Applied Catalysis A: General, 1998, 172, 351-358.	4.3	80
14	Ni/Mgo catalyst prepared using citric acid for hydrogenation of carbon dioxide. Applied Catalysis A: General, 1997, 158, 185-199.	4.3	78
15	Ni/SiO2 prepared by sol–gel process using citric acid. Microporous and Mesoporous Materials, 2003, 66, 197-208.	4.4	58
16	A new method for quantitative characterization of adsorbed hydrogen on Pt particles by means of Pt L-edge XANES. Chemical Physics Letters, 1996, 256, 445-448.	2.6	57
17	Creation of highly stable monomeric Pd(II) species in an anion-exchangeable hydroxy double salt interlayer: Application to aerobic alcohol oxidation under an air atmosphere. Green Chemistry, 2009, 11, 2034.	9.0	51
18	Asymmetric hydrogenation of α,β-unsaturated carboxylic acid esters by rhodium(I) — phosphine complexes supported on smectites. Journal of Molecular Catalysis A, 1996, 107, 297-303.	4.8	49

#	Article	IF	CITATIONS
19	In situ d electron density of Pt particles on supports by XANES. Catalysis Letters, 1993, 20, 87-95.	2.6	45
20	Lewis Acid Catalysis of TiO ₄ Tetrahedra on Mesoporous Silica in Water. ACS Catalysis, 2014, 4, 1198-1204.	11.2	45
21	Characterization of CuMn-spinel catalyst for methanol steam reforming. Catalysis Communications, 2009, 10, 1800-1803.	3.3	42
22	EXAFS study on interfacial structure between Pd cluster and n-octadecanethiolate monolayer: formation of mixed Pd–S interlayer. Chemical Physics Letters, 2003, 376, 26-32.	2.6	40
23	High-yield synthesis of PVP-stabilized small Pt clusters by microfluidic method. Catalysis Today, 2012, 183, 101-107.	4.4	40
24	Synthesis of 1,5â€Pentanediol by Hydrogenolysis of Furfuryl Alcohol over Ni–Y ₂ O ₃ Composite Catalyst. ChemCatChem, 2017, 9, 2869-2874.	3.7	40
25	Preparation of clay-supported Sn catalysts and application to Baeyer–Villiger oxidation. Green Chemistry, 2012, 14, 771.	9.0	39
26	One-pot selective conversion of C5-furan into 1,4-pentanediol over bulk Ni–Sn alloy catalysts in an ethanol/H2O solvent mixture. Green Chemistry, 2019, 21, 2307-2315.	9.0	38
27	Efficient hydrogenation of levulinic acid in water using a supported Ni–Sn alloy on aluminium hydroxide catalysts. Catalysis Science and Technology, 2016, 6, 2955-2961.	4.1	37
28	Selective hydrogenation of unsaturated carbonyls by Ni–Fe-based alloy catalysts. Catalysis Science and Technology, 2017, 7, 3637-3646.	4.1	37
29	Photoexcited Electrons Driven by Doping Concentration Gradient: Flux-Prepared NaTaO ₃ Photocatalysts Doped with Strontium Cations. ACS Catalysis, 2018, 8, 9334-9341.	11.2	36
30	Asymmetric hydrogenation of itaconates by hectorite-intercalated Rh-DIOP complex. Journal of Molecular Catalysis A, 1999, 137, 263-267.	4.8	33
31	CO2 hydrogenation activity and surface structure of zeolite-supported Rh catalysts. Applied Catalysis A: General, 1998, 173, 47-60.	4.3	31
32	Size-Controlled Synthesis of Gold Clusters as Efficient Catalysts for Aerobic Oxidation. Catalysis Surveys From Asia, 2011, 15, 230-239.	2.6	31
33	Oxidative cleavage of isoeugenol to vanillin under molecular oxygen catalysed by cobalt porphyrin intercalated into lithium taeniolite clay. Journal of Molecular Catalysis A, 2012, 361-362, 72-79.	4.8	31
34	Promoting effect of NiAl2O4 for supported Ni particles on sprayed Ni/Al2O3 catalysts. Catalysis Letters, 2000, 69, 33-36.	2.6	30
35	A Novel Preparation Method of Ni–Sn Alloy Catalysts Supported on Aluminium Hydroxide: Application to Chemoselective Hydrogenation of Unsaturated Carbonyl Compounds. Chemistry Letters, 2012, 41, 769-771.	1.3	29
36	Local Environment of Strontium Cations Activating NaTaO ₃ Photocatalysts. ACS Catalysis, 2018, 8, 880-885.	11.2	29

#	Article	IF	CITATIONS
37	Surface structures and catalytic properties of supported niobium oxides. Catalysis Today, 1996, 28, 49-58.	4.4	28
38	Regioselective hydrogenation of dienes catalyzed by palladium–aminosilane complexes grafted on MCM-41. Journal of Molecular Catalysis A, 2002, 182-183, 343-350.	4.8	26
39	Double Doping of NaTaO ₃ Photocatalysts with Lanthanum and Manganese for Strongly Enhanced Visible-Light Absorption. ACS Applied Energy Materials, 2019, 2, 7518-7526.	5.1	26
40	Hemicellulose decomposition and saccharides production from various plant biomass by sulfonated allophane catalyst. Catalysis Today, 2011, 164, 415-418.	4.4	25
41	Electron Population and Water Splitting Activity Controlled by Strontium Cations Doped in KTaO ₃ Photocatalysts. Journal of Physical Chemistry C, 2019, 123, 18387-18397.	3.1	25
42	An anionic d-valine–palladium(ii) complex supported on a hydroxy double salt with a BrÃ,nsted basic phosphate anion: application for a heterogeneous catalyst toward aerobic alcohol oxidation. Catalysis Science and Technology, 2011, 1, 1376.	4.1	23
43	Efficient 1,4-Addition of Enones and Boronic Acids Catalyzed by a Ni–Zn Hydroxyl Double Salt-Intercalated Anionic Rhodium(III) Complex. ACS Catalysis, 2014, 4, 4040-4046.	11.2	23
44	The atomic-scale structure of LaCrO ₃ –NaTaO ₃ solid solution photocatalysts with enhanced electron population. Physical Chemistry Chemical Physics, 2019, 21, 5148-5157.	2.8	23
45	Characterization of Rh Particles and Li-Promoted Rh Particles in Y Zeolite during CO2 Hydrogenation—A New Mechanism for Catalysis Controlled by the Dynamic Structure of Rh Particles and the Li Additive Effect. Journal of Catalysis, 2000, 194, 91-104.	6.2	22
46	Enhanced oxygen reduction activity of platinum subnanocluster catalysts through charge redistribution. Chemical Communications, 2019, 55, 12603-12606.	4.1	22
47	Hydrogenolysis of Furfural into 1,5-Pentanediol by Employing Ni-M (M = Y or La) Composite Catalysts. Chemistry Letters, 2017, 46, 744-746.	1.3	21
48	Structures and catalysis of new Nb dimers on SiO2. Catalysis Today, 1993, 16, 427-434.	4.4	20
49	Acceptorless dehydrogenation of alcohols using Cu–Fe catalysts prepared from Cu–Fe layered double hydroxides as precursors. Catalysis Science and Technology, 2018, 8, 3010-3014.	4.1	20
50	Development of Nanoporous Ni-Sn Alloy and Application for Chemoselective Hydrogenation of Furfural to Furfuryl Alcohol. Bulletin of Chemical Reaction Engineering and Catalysis, 2014, 9, 53-59.	1.1	19
51	Dopant site in indium-doped SrTiO ₃ photocatalysts. Physical Chemistry Chemical Physics, 2020, 22, 19178-19187.	2.8	19
52	Water-Splitting Activity of La-Doped NaTaO ₃ Photocatalysts Sensitive to Spatial Distribution of Dopants. Journal of Physical Chemistry C, 2020, 124, 15285-15294.	3.1	19
53	Lewis Acid and Base Catalysis of YNbO 4 Toward Aqueousâ€Phase Conversion of Hexose and Triose Sugars to Lactic Acid in Water. ChemCatChem, 2020, 12, 350-359.	3.7	18
54	Selective Production of Xylose and Xylo-oligosaccharides from Bamboo Biomass by Sulfonated Allophane Solid Acid Catalyst. Chemistry Letters, 2009, 38, 1176-1177.	1.3	17

#	Article	IF	CITATIONS
55	Size Control of Catalytic Reaction Space by Intercalation of Alkylcarboxylate Anions into Ni–Zn Mixed Basic Salt Interlayer: Application for Knoevenagel Reaction in Water. Chemistry Letters, 2010, 39, 304-305.	1.3	17
56	Studies on tris(β-diketonato)zirconium (IV); syntheses, characterization and catalytic activity for ring opening of oxiranes. Catalysis Communications, 2005, 6, 426-430.	3.3	15
57	Highly efficient alcohol oxidation catalyzed by palladium(II)–alkylamine complexes using atmospheric molecular oxygen. Journal of Molecular Catalysis A, 2008, 282, 28-33.	4.8	15
58	Efficiently Recyclable and Easily Separable Ni-Fe Alloy Catalysts for Chemoselective Hydrogenation of Biomass-derived Furfural. Chemistry Letters, 2017, 46, 149-151.	1.3	15
59	Visible light responsive La and Fe co-doped NaTaO3 photocatalysts: Local structure around dopants. Chemical Physics, 2020, 531, 110648.	1.9	15
60	Chemoselective Hydrogenation of Unsaturated Nitro Compounds to Unsaturated Amines by Ni-Sn Alloy Catalysts. Chemistry Letters, 2018, 47, 971-974.	1.3	14
61	Recent progress in EXAFS/NEXAFS spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 2014, 195, 375-381.	1.7	13
62	Highly Catalytic Performance of La ₂ O ₃ in the Selective Transfer Hydrogenation of Biomass-derived Furfural. Chemistry Letters, 2017, 46, 1580-1583.	1.3	13
63	Recyclable Pd-contained perovskite catalyst synthesized by a low temperature hydrothermal method for aerobic alcohol oxidation. Molecular Catalysis, 2018, 453, 132-138.	2.0	13
64	XAFS and HAADF STEM combined characterization for size regulated Ni nanocluster catalyst and its unique size dependence for water gas shift reaction. Applied Catalysis A: General, 2014, 478, 66-70.	4.3	12
65	Epoxidation of cyclic enones with hydrogen peroxide catalysed by alkylcarboxylate-intercalated Ni–Zn mixed basic salts. Catalysis Science and Technology, 2015, 5, 578-583.	4.1	12
66	Hydrogenolysis of Tetrahydrofurfuryl Alcohol to 1,5-Pentanediol over a Nickel-Yttrium Oxide Catalyst Containing Ruthenium. Chemistry Letters, 2018, 47, 103-106.	1.3	12
67	Preparation and catalytic properties of a new SiO2-attached Nb-dimer catalyst: regulation of acidity–basicity by the number of metal atoms in surface active sites. Journal of the Chemical Society Chemical Communications, 1991, , 112-113.	2.0	11
68	CO2 hydrogenation over micro―and mesoporous oxides supported Ru catalysts. Catalysis Letters, 1999, 60, 125-132.	2.6	11
69	New application of spray reaction technique to the preparation of supported gold catalysts for environmental catalysis. Journal of Molecular Catalysis A, 2002, 182-183, 209-214.	4.8	11
70	Study on the selectivity of propane photo-oxidation reaction on SBA-15 supported Mo oxide catalyst. Catalysis Today, 2016, 265, 90-94.	4.4	11
71	Kaolinite Catalyst for the Production of a Biodiesel-Based Compound from Biomass-Derived Furfuryl Alcohol. ACS Applied Energy Materials, 2018, 1, 2460-2463.	5.1	11
72	Chemoselective Hydrogenation of 4-Nitrostyrene to 4-Aminostyrene by Highly Efficient TiO2 Supported Ni3Sn2 Alloy Catalyst. Bulletin of the Chemical Society of Japan, 2019, 92, 811-816.	3.2	11

#	Article	IF	CITATIONS
73	One-pot synthesis of aniline N-alkylation from benzyl alcohol over Cu-Fe catalyst. Applied Catalysis A: General, 2020, 602, 117519.	4.3	11
74	Characterization of Heat-Treated Synthetic Imogolite by 27Al MAS and 27Al MQMAS Solid-State NMR. Bulletin of the Chemical Society of Japan, 2011, 84, 656-659.	3.2	10
75	The role of the shell in core–shell-structured La-doped NaTaO ₃ photocatalysts. Physical Chemistry Chemical Physics, 2021, 23, 8868-8879.	2.8	10
76	Observation of the Structural Change in the Nb Sites during Ethanol Dehydration on a SiO2-Attached Nb Dimer Catalyst by EXAFS. The Journal of Physical Chemistry, 1994, 98, 11576-11581.	2.9	9
77	New Clay-Supported Chiral Rhodium Complexes: Interlayer Modification with Structural Tuning Guests and Asymmetric Hydrogenation. Chemistry Letters, 1998, 27, 1191-1192.	1.3	9
78	Synthesis of Novel Nano-structured Clays: Unique Conformation of Pillar Complexes. Chemistry Letters, 2004, 33, 208-209.	1.3	9
79	CaO-catalyzed Aerobic Oxidation of α-Hydroxy Ketones: Application to One-pot Synthesis of Quinoxaline Derivatives. Chemistry Letters, 2012, 41, 488-490.	1.3	9
80	Hydrophenylation of internal alkynes with boronic acids catalysed by a Ni–Zn hydroxy double salt-intercalated anionic rhodium(<scp>iii</scp>) complex. Catalysis Science and Technology, 2016, 6, 863-868.	4.1	9
81	Study on the promoting effect of nickel silicate for 1-phenylethanol oxidation on supported NiO nanocluster catalysts. Catalysis Today, 2018, 307, 29-34.	4.4	9
82	Artificially Designed Compositionally Graded Sr-Doped NaTaO ₃ Single-Crystalline Thin Films and the Dynamics of Their Photoexcited Electron–Hole Pairs. Chemistry of Materials, 2021, 33, 226-233.	6.7	9
83	Creation of Highly Reducible CuO Species by High-Temperature Calcination of a Cu-Al Layered Double Hydroxide: Selective Hydrogenation of Furfural into Furfuryl Alcohol with Formic Acid. Bulletin of the Chemical Society of Japan, 2022, 95, 121-128.	3.2	9
84	Recyclable Pd-Incorporated Perovskite-Titanate Catalysts Synthesized in Molten Salts for the Liquid-Phase Oxidation of Alcohols with Molecular Oxygen. Bulletin of the Chemical Society of Japan, 2013, 86, 146-152.	3.2	8
85	Highly Selective Transfer Hydrogenation of Carbonyl Compounds Using La2O3. Bulletin of the Chemical Society of Japan, 2018, 91, 1561-1569.	3.2	8
86	XAFS Analysis for Niobium Carbide Particle Growth on Silica Support During Preparation Process. Topics in Catalysis, 2002, 18, 101-104.	2.8	7
87	Preparation of supported NbC catalysts from peroxoniobic acid and in situ XAFS characterization. Applied Catalysis A: General, 2008, 343, 25-28.	4.3	7
88	Promotional Effect of Iron for the Nitridation of Niobium Oxide to Niobium Nitride. Topics in Catalysis, 2009, 52, 1517-1524.	2.8	7
89	Preparation and Catalysis of Supported NiO Nanocluster for Oxidative Coupling of Thiophenol. Transactions of the Materials Research Society of Japan, 2012, 37, 177-180.	0.2	7
90	In Situ Generation of Catalytically Active Cu0 Species Derived from Cu-Al Layered Double Hydroxides for Acceptorless Alcohol Dehydrogenation. Chemistry Letters, 2022, 51, 334-337.	1.3	7

#	Article	IF	CITATIONS
91	Characterization and catalytic performance of designed surfaces. Journal of Molecular Catalysis A, 2000, 158, 67-83.	4.8	6
92	Activation of Bulk MoO3Catalysts by Spray Reaction Method for Propene Photometathesis Reaction. Catalysis Letters, 2004, 93, 177-180.	2.6	6
93	Selective synthesis of primary methoxypropanol using clay supported tris(2,4-pentanedionato)zirconium(IV). Journal of Molecular Catalysis A, 2004, 221, 141-144.	4.8	6
94	Effect of Local Structure of Mo Oxide on Selective Photo-Oxidation of Propane to Acetone. Catalysis Letters, 2013, 143, 154-158.	2.6	6
95	Enhanced oxygen reduction activity of size-selected platinum subnanocluster catalysts: Pt _{<i>n</i>} (<i>n</i> = 3–9). Catalysis Science and Technology, 2022, 12, 1400-1407.	4.1	6
96	X-ray absorption fine structure study on residue bromine in carbons with different degrees of graphitization. Carbon, 2003, 41, 2931-2938.	10.3	5
97	Effect of Co addition for carburizing process of Ti-oxide/SiO2 into TiC/SiO2. Applied Catalysis A: General, 2007, 323, 104-109.	4.3	5
98	Synergistic Effect in Ir- or Pt-Doped Ru Nanoparticles: Catalytic Hydrogenation of Carbonyl Compounds under Ambient Temperature and H ₂ Pressure. ACS Catalysis, 2021, 11, 10502-10507.	11.2	5
99	Size Control of Ni Nanocluster by the Carbon Chain Length of Secondary Alkoxide. E-Journal of Surface Science and Nanotechnology, 2012, 10, 648-650.	0.4	5
100	Reversible structural change of Rh particles supported on GeO2 submonolayers–SiO2 in reduction and oxidation by XAFS, XRD, TEM and FTIR. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 3217-3227.	1.7	4
101	Regioselective Ring Opening Reactions of Oxiranes with Acrylic Acid by Clay Supported Zirconium .BETADiketonate Catalysts. Journal of Ion Exchange, 2007, 18, 584-589.	0.3	4
102	Preparation of a Highly Stable Pd-Perovskite Catalyst for Suzuki Couplings via a Low-Temperature Hydrothermal Treatment. ACS Omega, 2018, 3, 17528-17531.	3.5	4
103	Preparation of Mesoporous Silica Supported Nb Catalysts and in-situ XAFS Characterization During Carburization Process. Physica Scripta, 2005, , 807.	2.5	4
104	Suspended Spray Reaction for Preparation of Ru/Al2O3Catalyst. Chemistry Letters, 2000, 29, 652-653.	1.3	3
105	Nickel Oxide Particles Coated with Silica. Bulletin of the Chemical Society of Japan, 2002, 75, 2297-2304.	3.2	3
106	Preparation of mesoporous silica anchored mo catalysts and in-situ XAFS characterization under propene photometathesis reaction. Studies in Surface Science and Catalysis, 2003, , 359-362.	1.5	3
107	Development of Supported NiO Nanocluster for Aerobic Oxidation of 1-Phenylethanol and Elucidation of Reaction Mechanism via X-ray Analysis. Bulletin of the Chemical Society of Japan, 2019, 92, 840-846.	3.2	3
108	Chemoselective synthesis of imine and secondary amine from nitrobenzene and benzaldehyde by Ni3Sn2 alloy catalyst supported on TiO2. Molecular Catalysis, 2021, 505, 111503.	2.0	3

#	Article	IF	CITATIONS
109	Dependence of Photoexcited Electron Behavior on Octahedral Distortion in Barium-Doped NaTaO ₃ Photocatalysts. Journal of Physical Chemistry C, 2021, 125, 16403-16412.	3.1	3
110	EXAFS Observation of Li Additive Effect on Structure of Rh Particles Supported on Zeolite. Japanese Journal of Applied Physics, 1999, 38, 81.	1.5	3
111	Specific lift-up behaviour of acetate-intercalated layered yttrium hydroxide interlayer in water: application for heterogeneous BrÃ,nsted base catalysts toward Knoevenagel reactions. Catalysis Science and Technology, 2022, 12, 2061-2070.	4.1	3
112	The Effect of Li on Structure of Supported Rh Particles in Zeolite. Molecular Crystals and Liquid Crystals, 2000, 341, 473-478.	0.3	2
113	Characteristics of supported gold catalysts prepared by spray reaction method. Studies in Surface Science and Catalysis, 2001, , 769-772.	1.5	2
114	Multinuclear Solid-State NMR Study of Allophane. Bulletin of the Chemical Society of Japan, 2012, 85, 372-375.	3.2	2
115	Formation and dichroism of poly(vinyl alcohol)–iodine complex in photocurable film. Polymers for Advanced Technologies, 2015, 26, 338-344.	3.2	2
116	The catalytic oxidation of 1-phenylethanol over SiO2 supported manganese oxide nanocluster prepared by PVP stabilized colloidal Mn as precursor. Catalysis Today, 2020, 352, 250-254.	4.4	2
117	Asymmetric Hydrogenation of Acetophenone by Rh(I)-BINAP Supported on Smectites with Various Interlayer Distances. Journal of Ion Exchange, 2003, 14, 397-400.	0.3	2
118	A novel effect of Li additive: dynamic control of Rh mobility during CO2 hydrogenation reaction. Studies in Surface Science and Catalysis, 2000, 130, 3759-3764.	1.5	1
119	Multiple Scattering Approach to Au L3edge XANES of sprAuAl2O3 Catalyst. Physica Scripta, 2005, , 756.	2.5	1
120	In-Situ XAFS Characterization for Nitriding Process of Silica Supported Nb Catalysts Under N2-H2 Gas. AIP Conference Proceedings, 2007, , .	0.4	1
121	XAFS Study of the Photo-Active Site of Mo/MCM-41. AIP Conference Proceedings, 2007, , .	0.4	1
122	Hydrogenation of CO2 over Rh ion exchanged zeolite catalysts. Studies in Surface Science and Catalysis, 1998, , 455-458.	1.5	0
123	Structural Analysis of PhotoChemically Anchored Molybdenum Oxide Catalysts by EXAFS. Physica Scripta, 2005, , 825.	2.5	0
124	Enhancement of Oxidative Dehydrogenation of Alcohols by Utilizing Hydrotalcite as Support of NiO Nanocluster Catalyst. Chemistry Letters, 2019, 48, 374-377.	1.3	0