
Liang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4426394/publications.pdf Version: 2024-02-01

Цимс 7нао

#	Article	IF	CITATIONS
1	Extracellular pH decline introduced by high pressure carbon dioxide is a main factor inducing bacteria to enter viable but non-culturable state. Food Research International, 2022, 151, 110895.	6.2	14
2	Supercritical Carbon Dioxide Applications in Food Processing. Food Engineering Reviews, 2021, 13, 570-591.	5.9	32
3	Effect of High Pressure Processing on the Preparation and Characteristic Changes of Biopolymer-Based Films in Food Packaging Applications. Food Engineering Reviews, 2021, 13, 454-464.	5.9	9
4	Physicochemical properties of seed protein isolates extracted from pepper meal by pressure-assisted and conventional solvent defatting. Food and Function, 2021, 12, 11033-11045.	4.6	3
5	High pressure processing combined with selected hurdles: Enhancement in the inactivation of vegetative microorganisms. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1800-1828.	11.7	20
6	Pressure-resistant acclimation of lactic acid bacteria from a natural fermentation product using high pressure. Innovative Food Science and Emerging Technologies, 2021, 69, 102660.	5.6	11
7	Processing of chestnut rose juice using three-stage ultra-filtration combined with high pressure processing. LWT - Food Science and Technology, 2021, 143, 111127.	5.2	13
8	Induction, detection, formation, and resuscitation of viable but nonâ€culturable state microorganisms. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 149-183.	11.7	144
9	High pressure CO2 reduces the wet heat resistance of Bacillus subtilis spores by perturbing the inner membrane. Innovative Food Science and Emerging Technologies, 2020, 60, 102291.	5.6	5
10	Chemical characterization and comparison of two chestnut rose cultivars from different regions. Food Chemistry, 2020, 323, 126806.	8.2	21
11	A complete set of monosomic alien addition lines developed from <i>Gossypium anomalum</i> in a <i>Gossypium hirsutum</i> background: genotypic and phenotypic characterization. Breeding Science, 2020, 70, 494-501.	1.9	0
12	Transcription Factor GarWRKY5 Is Involved in Salt Stress Response in Diploid Cotton Species (Gossypium aridum L.). International Journal of Molecular Sciences, 2019, 20, 5244.	4.1	14
13	Mechanism of inactivation of Bacillus subtilis spores by high pressure CO2 at high temperature. Food Microbiology, 2019, 82, 36-45.	4.2	11
14	Effects of high pressure on activities and properties of superoxide dismutase from chestnut rose. Food Chemistry, 2019, 294, 557-564.	8.2	21
15	Comparison of the compounds and characteristics of pepper seed oil by pressure-assisted, ultrasound-assisted and conventional solvent extraction. Innovative Food Science and Emerging Technologies, 2019, 54, 78-86.	5.6	34
16	Purification and Characterization of Superoxide Dismutases from Sea Buckthorn and Chestnut Rose. Journal of Food Science, 2019, 84, 746-753.	3.1	11
17	The Association of Cell Division Regulated by DicC With the Formation of Viable but Non-culturable Escherichia coli O157:H7. Frontiers in Microbiology, 2019, 10, 2850.	3.5	13
18	Quantitative Trait Locus Mapping and Candidate Gene Analysis for Verticillium Wilt Resistance Using Gossypium barbadense Chromosomal Segment Introgressed Line. Frontiers in Plant Science, 2018, 9, 682.	3.6	18

LIANG ZHAO

#	Article	IF	CITATIONS
19	Novel application of CO2-assisted high pressure processing in cucumber juice and apple juice. LWT - Food Science and Technology, 2018, 96, 491-498.	5.2	15
20	CO 2 -assisted high pressure processing on inactivation of Escherichia coli and Staphylococcus aureus. Journal of CO2 Utilization, 2017, 22, 53-62.	6.8	26
21	Potential of high-pressure processing and high-temperature/short-time thermal processing on microbial, physicochemical and sensory assurance of clear cucumber juice. Innovative Food Science and Emerging Technologies, 2016, 34, 51-58.	5.6	61
22	Korla pear juice treated by ultrafiltration followed by high pressure processing or high temperature short time. LWT - Food Science and Technology, 2016, 65, 283-289.	5.2	33
23	Microorganisms and Some Quality of Red Grapefruit Juice Affected by High Pressure Processing and High Temperature Short Time. Food and Bioprocess Technology, 2015, 8, 2096-2108.	4.7	31
24	Effects of Anti-browning Combinations of Ascorbic Acid, Citric Acid, Nitrogen and Carbon Dioxide on the Quality of Banana Smoothies. Food and Bioprocess Technology, 2014, 7, 161-173.	4.7	44
25	Effect of Ultrafiltration Combined with High-Pressure Processing on Safety and Quality Features of Fresh Apple Juice. Food and Bioprocess Technology, 2014, 7, 3246-3258.	4.7	37
26	Inactivation of naturally occurring microbiota in cucumber juice by pressure treatment. International Journal of Food Microbiology, 2014, 174, 12-18.	4.7	19
27	Mapping of a new wrinkled leaf (wr3) gene in upland cotton. Yi Chuan = Hereditas / Zhongguo Yi Chuan Xue Hui Bian Ji, 2014, 36, 1256-60.	0.2	2
28	Comparing the effects of high hydrostatic pressure and thermal pasteurization combined with nisin on the quality of cucumber juice drinks. Innovative Food Science and Emerging Technologies, 2013, 17, 27-36.	5.6	99