
Cyril J Morcrette

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4426355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Convection forced by a descending dry layer and low-level moist convergence. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 61, 250.	0.8	6
2	A â€~̃warm path' for Gulf Stream–troposphere interactions. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 69, 1299397.	0.8	29
3	The increased prevalence of Vibrio species and the first reporting of Vibrio jasicida and Vibrio rotiferianus at UK shellfish sites. Water Research, 2022, 211, 117942.	5.3	26
4	Using machine learning to find cloudâ€base height: a didactic challenge. Weather, 2022, 77, 391-395.	0.6	1
5	Modification of the thermodynamic variability closure in the Met Office Unified Model prognostic cloud scheme. Atmospheric Science Letters, 2021, 22, e1021.	0.8	0
6	A Bimodal Diagnostic Cloud Fraction Parameterization. Part II: Evaluation and Resolution Sensitivity. Monthly Weather Review, 2021, 149, 859-878.	0.5	4
7	A Bimodal Diagnostic Cloud Fraction Parameterization. Part I: Motivating Analysis and Scheme Description. Monthly Weather Review, 2021, 149, 841-857.	0.5	10
8	Combining distributionâ€based neural networks to predict weather forecast probabilities. Quarterly Journal of the Royal Meteorological Society, 2021, 147, 4337-4357.	1.0	13
9	The first Met Office Unified Model–JULES Regional Atmosphere and Land configuration, RAL1. Geoscientific Model Development, 2020, 13, 1999-2029.	1.3	96
10	Development and Evaluation of In-Flight Icing Index Forecast for Aviation. Weather and Forecasting, 2019, 34, 731-750.	0.5	10
11	The Met Office Unified Model Clobal Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations. Geoscientific Model Development, 2019, 12, 1909-1963.	1.3	372
12	Finding plausible and diverse variants of a climate model. PartÂ1: establishing the relationship between errors at weather and climate time scales. Climate Dynamics, 2019, 53, 989-1022.	1.7	29
13	CAUSES: Diagnosis of the Summertime Warm Bias in CMIP5 Climate Models at the ARM Southern Great Plains Site. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2968-2992.	1.2	33
14	A Pan-African Convection-Permitting Regional Climate Simulation with the Met Office Unified Model: CP4-Africa. Journal of Climate, 2018, 31, 3485-3508.	1.2	102
15	CAUSES: Attribution of Surface Radiation Biases in NWP and Climate Models near the U.S. Southern Great Plains. Journal of Geophysical Research D: Atmospheres, 2018, 123, 3612-3644.	1.2	62
16	Introduction to CAUSES: Description of Weather and Climate Models and Their Near‧urface Temperature Errors in 5Âday Hindcasts Near the Southern Great Plains. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2655-2683.	1.2	53
17	Insights into the diurnal cycle of global Earth outgoing radiation using aÂnumerical weather prediction model. Atmospheric Chemistry and Physics, 2018, 18, 5129-5145.	1.9	12
18	CAUSES: On the Role of Surface Energy Budget Errors to the Warm Surface Air Temperature Error Over the Central United States. Journal of Geophysical Research D: Atmospheres, 2018, 123, 2888-2909.	1.2	60

CYRIL J MORCRETTE

#	Article	IF	CITATIONS
19	Modulation of precipitation by conditional symmetric instability release. Atmospheric Research, 2017, 185, 186-201.	1.8	12
20	Determination of global Earth outgoing radiation at high temporal resolution using a theoretical constellation of satellites. Journal of Geophysical Research D: Atmospheres, 2017, 122, 1114-1131.	1.2	13
21	Toward a New UV Index Diagnostic in the Met Office's Forecast Model. Journal of Advances in Modeling Earth Systems, 2017, 9, 2654-2671.	1.3	3
22	The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations. Geoscientific Model Development, 2017, 10, 1487-1520.	1.3	401
23	Towards retrieving critical relative humidity from groundâ€based remoteâ€sensing observations. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 2867-2881.	1.0	15
24	A Physically Based Subgrid Parameterization for the Production and Maintenance of Mixed-Phase Clouds in a General Circulation Model. Journals of the Atmospheric Sciences, 2016, 73, 279-291.	0.6	44
25	Evaluation of CMIP5 upper troposphere and lower stratosphere geopotential height with GPS radio occultation observations. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1678-1689.	1.2	10
26	A regimeâ€dependent parametrization of subgridâ€scale cloud water content variability. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 1975-1986.	1.0	27
27	Using regime analysis to identify the contribution of clouds to surface temperature errors in weather and climate models. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 3190-3206.	1.0	22
28	Processes Controlling Tropical Tropopause Temperature and Stratospheric Water Vapor in Climate Models. Journal of Climate, 2015, 28, 6516-6535.	1.2	47
29	Evaluating the Diurnal Cycle of Upper-Tropospheric Ice Clouds in Climate Models Using SMILES Observations. Journals of the Atmospheric Sciences, 2015, 72, 1022-1044.	0.6	35
30	The Met Office Unified Model Global Atmosphere 4.0 and JULES Global Land 4.0 configurations. Geoscientific Model Development, 2014, 7, 361-386.	1.3	154
31	The evolution of an MCS over southern England. Part 1: Observations. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 439-457.	1.0	9
32	The evolution of an MCS over southern England. Part 2: Model simulations and sensitivity to microphysics. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 458-479.	1.0	8
33	Spatial variability of liquid cloud and rain: observations and microphysical effects. Quarterly Journal of the Royal Meteorological Society, 2014, 140, 583-594.	1.0	101
34	Evaluating statistical cloud schemes: What can we gain from groundâ€based remote sensing?. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,507.	1.2	12
35	Diagnosis of regimeâ€dependent cloud simulation errors in CMIP5 models using "Aâ€Train―satellite observations and reanalysis data. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2762-2780.	1.2	90
36	Evaluation of two cloud parametrization schemes using ARM and Cloudâ€Net observations. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 964-979.	1.0	33

CYRIL J MORCRETTE

#	Article	IF	CITATIONS
37	Improvements to a prognostic cloud scheme through changes to its cloud erosion parametrization. Atmospheric Science Letters, 2012, 13, 95-102.	0.8	30
38	Prognosticâ€cloudâ€scheme increment diagnostics: a novel addition to the caseâ€study tool kit. Atmospheric Science Letters, 2012, 13, 200-207.	0.8	6
39	The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1 configurations. Geoscientific Model Development, 2011, 4, 919-941.	1.3	250
40	The increase of spatial data resolution for the detection of the initiation of convection. A case study from CSIP. Meteorologische Zeitschrift, 2010, 19, 179-198.	0.5	17
41	Parametrization of area cloud fraction. Atmospheric Science Letters, 2010, 11, 283-289.	0.8	23
42	Analysis of prognostic cloud scheme increments in a climate model. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 2061-2073.	1.0	15
43	The Surprising Role of Orography in the Initiation of an Isolated Thunderstorm in Southern England. Monthly Weather Review, 2009, 137, 3026-3046.	0.5	15
44	Convective inhibition beneath an upperâ€level PV anomaly. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 371-383.	1.0	15
45	PC2: A prognostic cloud fraction and condensation scheme. II: Climate model simulations. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 2109-2125.	1.0	73
46	PC2: A prognostic cloud fraction and condensation scheme. I: Scheme description. Quarterly Journal of the Royal Meteorological Society, 2008, 134, 2093-2107.	1.0	246
47	The Convective Storm Initiation Project. Bulletin of the American Meteorological Society, 2007, 88, 1939-1956.	1.7	110
48	Combination of Mesoscale and Synoptic Mechanisms for Triggering an Isolated Thunderstorm: Observational Case Study of CSIP IOP 1. Monthly Weather Review, 2007, 135, 3728-3749.	0.5	24
49	Variable cirrus shading during CSIP IOP 5. I: Effects on the initiation of convection. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 1643-1660.	1.0	13
50	Variable cirrus shading during CSIP IOP 5. II: Effects on the convective boundary layer. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 1661-1675.	1.0	12
51	Formation and release of symmetric instability following Delta-M adjustment. Quarterly Journal of the Royal Meteorological Society, 2006, 132, 1073-1089.	1.0	8
52	Secondary initiation of multiple bands of cumulonimbus over southern Britain. I: An observational case-study. Quarterly Journal of the Royal Meteorological Society, 2006, 132, 1021-1051.	1.0	16
53	Sensitivity of Cloudâ€Radiative Effects to Cloud Fraction Parametrizations in Tropical, Mid‣atitude and Arctic Kilometreâ€&cale Simulations. Quarterly Journal of the Royal Meteorological Society, 0, , .	1.0	2