Chaohai Wei

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4426248/chaohai-wei-publications-by-year.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

97
papers

2,594
citations

h-index

47
g-index

100
avg, IF

5.71
L-index

#	Paper	IF	Citations
97	A feasibility study of metal sulfide (FeS and MnS) on simultaneous denitrification and chromate reduction. <i>Journal of Hazardous Materials</i> , 2022 , 424, 127491	12.8	1
96	Functional graphene oxide for organic pollutants removal from wastewater: a mini review <i>Environmental Technology (United Kingdom)</i> , 2022 , 1-13	2.6	О
95	Carbon uptake bioenergetics of PAOs and GAOs in full-scale enhanced biological phosphorus removal systems <i>Water Research</i> , 2022 , 216, 118258	12.5	1
94	Minimizing toxic chlorinated byproducts during electrochemical oxidation of Ni-EDTA: Importance of active chlorine-triggered Fe(II) transition to Fe(IV) <i>Water Research</i> , 2022 , 219, 118548	12.5	2
93	Glycine adversely affects enhanced biological phosphorus removal. Water Research, 2021, 209, 117894	12.5	2
92	In-situ growth of Co/Ni bimetallic organic frameworks on carbon spheres with catalytic ozonation performance for removal of bio-treated coking wastewater. <i>Chemosphere</i> , 2021 , 291, 132874	8.4	2
91	Evolution of biochemical processes in coking wastewater treatment: A combined evaluation of material and energy efficiencies and secondary pollution. <i>Science of the Total Environment</i> , 2021 , 807, 151072	10.2	2
90	An OxicHydrolyticDxic Process at the Nexus of Sludge Spatial Segmentation, Microbial Functionality, and Pollutants Removal in the Treatment of Coking Wastewater. <i>ACS ES&T Water</i> , 2021 , 1, 1252-1262		5
89	Multiphase distribution and migration characteristics of heavy metals in typical sandy intertidal zones: insights from solid-liquid partitioning. <i>Ecotoxicology and Environmental Safety</i> , 2021 , 208, 11167	4 ⁷	6
88	Enhancement of PAHs biodegradation in biosurfactant/phenol system by increasing the bioavailability of PAHs. <i>Chemosphere</i> , 2021 , 266, 128941	8.4	12
87	Effects of alkali, autoclaving, and Fe+ autoclaving pretreatment on anaerobic digestion performance of coking sludge from the perspective of sludge extracts and methane production. <i>Environmental Science and Pollution Research</i> , 2021 , 28, 13151-13161	5.1	2
86	Influence of soil evolution on the heavy metal risk in three kinds of intertidal zone of the Pearl River Estuary. <i>Land Degradation and Development</i> , 2021 , 32, 583-596	4.4	7
85	The response of polycyclic aromatic hydrocarbon degradation in coking wastewater treatment after bioaugmentation with biosurfactant-producing bacteria Pseudomonas aeruginosa S5. <i>Water Science and Technology</i> , 2021 , 83, 1017-1027	2.2	4
84	Self-Activated Ni Cathode for Electrocatalytic Nitrate Reduction to Ammonia: From Fundamentals to Scale-Up for Treatment of Industrial Wastewater. <i>Environmental Science & Environmental Science & En</i>	10.3	5
83	Strategies to improve the adsorption properties of graphene-based adsorbent towards heavy metal ions and their compound pollutants: A review. <i>Journal of Hazardous Materials</i> , 2021 , 415, 125690	12.8	29
82	Synergy between autotrophic denitrification and Anammox driven by FeS in a fluidized bed bioreactor for advanced nitrogen removal. <i>Chemosphere</i> , 2021 , 280, 130726	8.4	5
81	Coking wastewater treatment plant as a sources of polycyclic aromatic hydrocarbons (PAHs) in sediments and ecological risk assessment. <i>Scientific Reports</i> , 2020 , 10, 7833	4.9	1

80	Enhanced energy efficiency for the complete mineralization of diclofenac by self-sequential ultrasound enhanced ozonation <i>RSC Advances</i> , 2020 , 10, 15493-15500	3.7	О
79	Discovering the Importance of ClO in a Coupled Electrochemical System for the Simultaneous Removal of Carbon and Nitrogen from Secondary Coking Wastewater Effluent. <i>Environmental Science & Environmental Science & Environm</i>	10.3	20
78	Selection of optimum biological treatment for coking wastewater using analytic hierarchy process. <i>Science of the Total Environment</i> , 2020 , 742, 140400	10.2	21
77	Fe/HClO Reaction Produces FeO: An Enhanced Advanced Oxidation Process. <i>Environmental Science & Environmental Science</i>	10.3	48
76	Graphene oxide-terminated hyperbranched amino polymer-carboxymethyl cellulose ternary nanocomposite for efficient removal of heavy metals from aqueous solutions. <i>International Journal of Biological Macromolecules</i> , 2020 , 149, 581-592	7.9	24
75	Distribution Characteristics of Volatile Organic Compounds and Contribution to Ozone Formation in a Coking Wastewater Treatment Plant. <i>International Journal of Environmental Research and Public Health</i> , 2020 , 17,	4.6	6
74	The correlations among wastewater internal energy, energy consumption and energy recovery/production potentials in wastewater treatment plant: An assessment of the energy balance. <i>Science of the Total Environment</i> , 2020 , 714, 136655	10.2	22
73	Diversity and functional prediction of microbial communities involved in the first aerobic bioreactor of coking wastewater treatment system. <i>PLoS ONE</i> , 2020 , 15, e0243748	3.7	4
72	The effect of peroxymonosulfate in WS nanosheets for the removal of diclofenac: Information exposure and degradation pathway. <i>Chemosphere</i> , 2020 , 245, 125678	8.4	19
71	Three-dimensional Co/Ni bimetallic organic frameworks for high-efficient catalytic ozonation of atrazine: Mechanism, effect parameters, and degradation pathways analysis. <i>Chemosphere</i> , 2020 , 253, 126767	8.4	25
7°	A comprehensive evaluation method for sludge pyrolysis and adsorption process in the treatment of coking wastewater. <i>Journal of Environmental Management</i> , 2019 , 235, 423-431	7.9	11
69	Material inter-recycling for advanced nitrogen and residual COD removal from bio-treated coking wastewater through autotrophic denitrification. <i>Bioresource Technology</i> , 2019 , 289, 121616	11	18
68	Residual chemical oxygen demand (COD) fractionation in bio-treated coking wastewater integrating solution property characterization. <i>Journal of Environmental Management</i> , 2019 , 246, 324-33	3 ⁷ 3 ⁹	30
67	Highly active and durable carbon electrocatalyst for nitrate reduction reaction. <i>Water Research</i> , 2019 , 161, 126-135	12.5	65
66	One-Step Treatment of Phosphite-Laden Wastewater: A Single Electrochemical Reactor Integrating Superoxide Radical-Induced Oxidation and Electrocoagulation. <i>Environmental Science & Environmental Science & Technology</i> , 2019 , 53, 5328-5336	10.3	34
65	Structure and function of microbial community associated with phenol co-substrate in degradation of benzo[a]pyrene in coking wastewater. <i>Chemosphere</i> , 2019 , 228, 128-138	8.4	19
64	Dual-template synthesis of mesoporous TiO2 nanotubes with structure-enhanced functional photocatalytic performance. <i>Applied Catalysis B: Environmental</i> , 2019 , 250, 301-312	21.8	75
63	Structure and function of microbial community involved in a novel full-scale prefix oxic coking wastewater treatment O/H/O system. <i>Water Research</i> , 2019 , 164, 114963	12.5	27

62	Gut digestion of earthworms significantly attenuates cell-free and -associated antibiotic resistance genes in excess activated sludge by affecting bacterial profiles. <i>Science of the Total Environment</i> , 2019 , 691, 644-653	10.2	26
61	In-situ Growth of a Bimetallic Cobalt-Nickel Organic Framework on Iron Foam: Achieving the Electron Modification on a Robust Self-supported Oxygen Evolution Electrode. <i>ChemCatChem</i> , 2019 , 11, 6061-6069	5.2	14
60	Emission characteristics and associated health risk assessment of volatile organic compounds from a typical coking wastewater treatment plant. <i>Science of the Total Environment</i> , 2019 , 693, 133417	10.2	42
59	Investigation of the fate of heavy metals based on process regulation-chemical reaction-phase distribution in an A-O-H-O biological coking wastewater treatment system. <i>Journal of Environmental Management</i> , 2019 , 247, 234-241	7.9	15
58	Simultaneous decarburization, nitrification and denitrification (SDCND) in coking wastewater treatment using an integrated fluidized-bed reactor. <i>Journal of Environmental Management</i> , 2019 , 252, 109661	7.9	12
57	A biosurfactant-producing Pseudomonas aeruginosa S5 isolated from coking wastewater and its application for bioremediation of polycyclic aromatic hydrocarbons. <i>Bioresource Technology</i> , 2019 , 281, 421-428	11	74
56	Functional identification behind gravity-separated sludge in high concentration organic coking wastewater: Microbial aggregation, apoptosis-like decay and community. <i>Water Research</i> , 2019 , 150, 120-128	12.5	18
55	Application of metabolic division of labor in simultaneous removal of nitrogen and thiocyanate from wastewater. <i>Water Research</i> , 2019 , 150, 216-224	12.5	13
54	Fabrication of terminal amino hyperbranched polymer modified graphene oxide and its prominent adsorption performance towards Cr(VI). <i>Journal of Hazardous Materials</i> , 2019 , 363, 161-169	12.8	101
53	Effects of electron-donating groups on the photocatalytic reaction of MOFs. <i>Catalysis Science and Technology</i> , 2018 , 8, 1696-1703	5.5	38
52	Adsorption of Cd by an ion-imprinted thiol-functionalized polymer in competition with heavy metal ions and organic acids <i>RSC Advances</i> , 2018 , 8, 8950-8960	3.7	30
51	Solubilization of polycyclic aromatic hydrocarbons (PAHs) with phenol in coking wastewater treatment system: Interaction and engineering significance. <i>Science of the Total Environment</i> , 2018 , 628-629, 467-473	10.2	39
50	Simultaneous nitrite and ammonium production in an autotrophic partial denitrification and ammonification of wastewaters containing thiocyanate. <i>Bioresource Technology</i> , 2018 , 252, 20-27	11	22
49	In situ synthesis and photocatalytic mechanism of a cyano bridged Cu(I) polymer. <i>Inorganic Chemistry Frontiers</i> , 2018 , 5, 1282-1287	6.8	14
48	Time-dependent bacterial community and electrochemical characterizations of cathodic biofilms in the surfactant-amended sediment-based bioelectrochemical reactor with enhanced 2,3,4,5-tetrachlorobiphenyl dechlorination. <i>Environmental Pollution</i> , 2018 , 236, 343-354	9.3	11
47	Spatial distributions, source apportionment and ecological risk of SVOCs in water and sediment from Xijiang River, Pearl River Delta. <i>Environmental Geochemistry and Health</i> , 2018 , 40, 1853-1865	4.7	9
46	Ozonation of aqueous phenol catalyzed by biochar produced from sludge obtained in the treatment of coking wastewater. <i>Journal of Environmental Management</i> , 2018 , 224, 376-386	7.9	41
45	Simultaneous removal of thiocyanate and nitrogen from wastewater by autotrophic denitritation process. <i>Bioresource Technology</i> , 2018 , 267, 30-37	11	8

(2017-2018)

Single microbial fuel cell reactor for coking wastewater treatment: Simultaneous carbon and nitrogen removal with zero alkaline consumption. <i>Science of the Total Environment</i> , 2018 , 621, 497-506	10.2	34
The mineralization of oxalic acid and bio-treated coking wastewater by catalytic ozonation using nickel oxide. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 2389-2400	5.1	12
Photocatalytic oxidation of nitrogen oxides over {001}TiO: the influence of F ions. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 35342-35351	5.1	6
Enhancement of visible-light photocatalytic activities of BiVO coupled with g-CN prepared using different precursors. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 32466-32477	5.1	14
In-Situ Synthesis and High-Efficiency Photocatalytic Performance of Cu(I)/Cu(II) Inorganic Coordination Polymer Quantum Sheets. <i>Inorganic Chemistry</i> , 2018 , 57, 13289-13295	5.1	12
Energy Balance Evaluation in Coking Wastewater Treatment: Optimization and Modeling of Integrated Biological and Adsorption Treatment System. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 16448-16458	8.3	9
Facile preparation of nitrogen and sulfur co-doped graphene-based aerogel for simultaneous removal of Cd and organic dyes. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 21164-21175	5.1	22
Quantification of the relationship between multiple metal(loid) distribution and integrated effect of internal-external factors in riverbed sediments across Xijiang River basin, South China. <i>Science of the Total Environment</i> , 2018 , 643, 527-538	10.2	7
Preparation of mesoporous SiO2/Bi2O3/TiO2 superhydrophilic thin films and their surface self-cleaning properties. <i>RSC Advances</i> , 2017 , 7, 1966-1974	3.7	21
Application of magnetic Cd2+ ion-imprinted mesoporous organosilica nanocomposites for mineral wastewater treatment. <i>RSC Advances</i> , 2017 , 7, 7996-8003	3.7	16
Microbial polychlorinated biphenyl dechlorination in sediments by electrical stimulation: The effect of adding acetate and nonionic surfactant. <i>Science of the Total Environment</i> , 2017 , 580, 1371-1380	10.2	22
Anaerobic Dechlorination of Tetrachlorobisphenol A in River Sediment and Associated Changes in Bacterial Communities. <i>Water, Air, and Soil Pollution</i> , 2017 , 228, 1	2.6	8
Preparation of 3,3,3-trifluoropropyl functionalized hydrophobic mesoporous silica and its outstanding adsorption properties for dibutyl phthalate. <i>RSC Advances</i> , 2017 , 7, 8338-8346	3.7	9
Enhanced Photocatalytic Degradation of Environmental Pollutants under Visible Irradiation by a Composite Coating. <i>Environmental Science & Environmental Pollutants under Visible Irradiation by a Composite Coating & Environmental Science & Environmental Pollutants under Visible Irradiation by a Composite Coating & Environmental Science & Environmental Pollutants under Visible Irradiation by a Composite Coating & Environmental Science & Environmental Pollutants under Visible Irradiation by a Composite Coating & Environmental Science & Environmental Scien</i>	10.3	52
Multi-phase distribution and comprehensive ecological risk assessment of heavy metal pollutants in a river affected by acid mine drainage. <i>Ecotoxicology and Environmental Safety</i> , 2017 , 141, 75-84	7	25
Nitrified coke wastewater sludge flocs: an attractive precursor for N,S dual-doped graphene-like carbon with ultrahigh capacitance and oxygen reduction performance. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 2012-2020	13	33
Addition of iron oxides in sediments enhances 2,3,4,5-tetrachlorobiphenyl (PCB 61) dechlorination by low-voltage electric fields. <i>RSC Advances</i> , 2017 , 7, 26019-26027	3.7	7
Preparation of an ion imprinted functionalized mesoporous silica for rapid and specific absorption Cr(III) ions in effluents. <i>RSC Advances</i> , 2017 , 7, 37778-37786	3.7	10
	nitrogen removal with zero alkaline consumption. <i>Science of the Total Environment</i> , 2018 , 621, 497-506 The mineralization of oxalic acid and bio-treated coking wastewater by catalytic ozonation using nickel oxide. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 2389-2400 Photocatalytic oxidation of nitrogen oxides over {001}TiO: the influence of F ions. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 35342-35351 Enhancement of visible-light photocatalytic activities of BiVO coupled with g-CN prepared using different precursors. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 32466-32477 In-Situ Synthesis and High-Efficiency Photocatalytic Performance of Cu(I)/Cu(II) Inorganic Coordination Polymer Quantum Sheets. <i>Inorganic Chemistry</i> , 2018 , 57, 13289-13295 Energy Balance Evaluation in Coking Wastewater Treatment: Optimization and Modeling of Integrated Biological and Adsorption Treatment System. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 16448-16458 Facile preparation of nitrogen and sulfur co-doped graphene-based aerogel for simultaneous removal of Cd and organic dyes. <i>Environmental Science and Pollution Research</i> , 2018 , 25, 21164-21175 Quantification of the relationship between multiple metal(loid) distribution and integrated effect of internal-external factors in riverbed sediments across Xijiang River basin, South China. <i>Science of the Total Environment</i> , 2018 , 643, 527-538 Preparation of mesoporous SiO2/Bi2O3/TiO2 superhydrophilic thin films and their surface self-cleaning properties. <i>RSC Advances</i> , 2017 , 7, 7996-8003 Microbial polychlorinated biphenyl dechlorination in sediments by electrical stimulation: The effect of adding acetate and nonionic surfactant. <i>Science of the Total Environment</i> , 2017 , 580, 1371-1380 Anaerobic Dechlorination of Tetrachlorobisphenol Ain River Sediment and Associated Changes in Bacterial Communities. <i>Water, Air, and Soil Pollution</i> , 2017 , 228, 1 Preparation of 3,3,3-trifluoropropyl functionalized hy	The mineralization of oxalic acid and bio-treated coking wastewater by catalytic ozonation using nickel oxide. Environmental Science and Pollution Research, 2018, 25, 2389-2400 Photocatalytic oxidation of nitrogen oxides over (001)TiO: the influence of F ions. Environmental Science and Pollution Research, 2018, 25, 32389-2400 Standard oxidation of nitrogen oxides over (001)TiO: the influence of F ions. Environmental Science and Pollution Research, 2018, 25, 32466-32477 In-Situ Synthesis and High-Efficiency Photocatalytic activities of BIVO coupled with g-CN prepared using different precursors. Environmental Science and Pollution Research, 2018, 25, 32466-32477 In-Situ Synthesis and High-Efficiency Photocatalytic Performance of Cu(I)/Cu(II) Inorganic Coordination Polymer Quantum Sheets. Inorganic Chemistry, 2018, 57, 13289-132295 Energy Balance Evaluation in Coking Wastewater Treatment: Optimization and Modeling of Integrated Biological and Adsorption Treatment System. ACS Sustainable Chemistry and Engineering, 2018, 6148-16458 Facile preparation of nitrogen and sulfur co-doped graphene-based aerogel for simultaneous removal of Cd and organic dyes. Environmental Science and Pollution Research, 2018, 25, 21164-21175 Facile preparation of the relationship between multiple metal(Ioid) distribution and integrated effect of Internal-external Factors in riverbed sediments across Xiljang River basin, South China. Science of the Total Environment, 2018, 643, 527-538 Preparation of mesoporous SiO2/Bil2O3/TiO2 superhydrophilic thin films and their surface self-cleaning properties. RSC Advances, 2017, 7, 1966-1974 Application of magnetic Gd2+ ion-imprinted mesoporous organosilica nanocomposites for mineral wastewater treatment. RSC Advances, 2017, 7, 7996-803 Microbial polychlorinated biphenyl dechlorination in sediments by electrical stimulation: The effect of adding acetate and nonionic surfactant. Science Amp: Technology, 2017, 8338-8346 Anaerobic Dechlorination of Tetrachlorobisphenol A in River Sediment and

26	Ozonation in water treatment: the generation, basic properties of ozone and its practical application. <i>Reviews in Chemical Engineering</i> , 2017 , 33,	5	64
25	Detailed characteristics of adsorption of bisphenol A by highly hydrophobic MCM-41 mesoporous molecular sieves. <i>Research on Chemical Intermediates</i> , 2016 , 42, 7169-7183	2.8	11
24	Emission patterns and risk assessment of polybrominated diphenyl ethers and bromophenols in water and sediments from the Beijiang River, South China. <i>Environmental Pollution</i> , 2016 , 219, 596-603	9.3	44
23	One-step synthesis of periodic ion imprinted mesoporous silica particles for highly specific removal of Cd2+ from mine wastewater. <i>Journal of Sol-Gel Science and Technology</i> , 2016 , 78, 632-640	2.3	14
22	Enhanced anaerobic dechlorination of polychlorinated biphenyl in sediments by bioanode stimulation. <i>Environmental Pollution</i> , 2016 , 211, 81-9	9.3	51
21	Distribution and migration of heavy metals in soil and crops affected by acid mine drainage: Public health implications in Guangdong Province, China. <i>Ecotoxicology and Environmental Safety</i> , 2016 , 124, 460-469	7	106
20	Removal of cyanide compounds from coking wastewater by ferrous sulfate: Improvement of biodegradability. <i>Journal of Hazardous Materials</i> , 2016 , 302, 468-474	12.8	55
19	Fate of Fe and Cd upon microbial reduction of Cd-loaded polyferric flocs by Shewanella oneidensis MR-1. <i>Chemosphere</i> , 2016 , 144, 2065-72	8.4	41
18	Treatment of high-concentration phenolic wastewater by pyridineBoal tar complexation extraction system. <i>Desalination and Water Treatment</i> , 2016 , 57, 24417-24429		1
17	Mechanism of Ozone Oxidation of Polycyclic Aromatic Hydrocarbons During the Reduction of Coking Wastewater Sludge. <i>Clean - Soil, Air, Water</i> , 2016 , 44, 1499-1507	1.6	2
16	Simultaneous phenol removal, nitrification and denitrification using microbial fuel cell technology. <i>Water Research</i> , 2015 , 76, 160-70	12.5	99
15	Identification of disinfection by-product precursors from the discharge of a coking wastewater treatment plant. <i>RSC Advances</i> , 2015 , 5, 43786-43797	3.7	13
14	Efficient removal of lead from highly acidic wastewater by periodic ion imprinted mesoporous SBA-15 organosilica combining metal coordination and co-condensation. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 9789-9798	13	77
13	Spectroscopic characterization of dissolved organic matter in coking wastewater during bio-treatment: full-scale plant study. <i>Water Science and Technology</i> , 2015 , 72, 1411-20	2.2	10
12	The Use of Accumulated Charge Density of a Bioanode to Estimate Maximum Current in a Bioelectrochemical System. <i>ChemElectroChem</i> , 2015 , 2, 1355-1360	4.3	
11	Monodisperse microporous carbon nanospheres: An efficient and stable solid phase microextraction coating material. <i>Analytica Chimica Acta</i> , 2015 , 884, 44-51	6.6	24
10	Estrogenic activity and identification of potential xenoestrogens in a coking wastewater treatment plant. <i>Ecotoxicology and Environmental Safety</i> , 2015 , 112, 238-46	7	14
9	Methyl parathion imprinted polymer nanoshell coated on the magnetic nanocore for selective recognition and fast adsorption and separation in soils. <i>Journal of Hazardous Materials</i> , 2014 , 264, 34-47	12.8	44

LIST OF PUBLICATIONS

8	Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies. <i>Environment International</i> , 2014 , 71, 118-38	12.9	389
7	Anode-biofilm electron transfer behavior and wastewater treatment under different operational modes of bioelectrochemical system. <i>Bioresource Technology</i> , 2014 , 157, 305-9	11	23
6	Study on preparation and properties of PVA-SA-PHB-AC composite carrier for microorganism immobilization. <i>Journal of Applied Polymer Science</i> , 2014 , 131, n/a-n/a	2.9	3
5	Modeling and optimization of the coagulation of highly concentrated coking wastewater by ferrous sulfate using a response surface methodology. <i>Desalination and Water Treatment</i> , 2014 , 1-12		
4	Highly ordered metal ion imprinted mesoporous silica particles exhibiting specific recognition and fast adsorption kinetics. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 7147	13	49
3	Isolation and Identification of Achromobacter sp. DN-06 and Evaluation of Its Pyridine Degradation Kinetics. <i>Water, Air, and Soil Pollution</i> , 2011 , 221, 365-375	2.6	10
2	One-step fabrication of membraneless microbial fuel cell cathode by electropolymerization of polypyrrole onto stainless steel mesh. <i>Biosensors and Bioelectronics</i> , 2011 , 26, 3953-7	11.8	30
1	Simple preparation of MnM-codoped titania photocatalyst with visible light response. <i>Research on Chemical Intermediates</i> , 2010 , 36, 95-101	2.8	13