Chris Carrie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4426166/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of Mitochondrial Protein Topology and. Methods in Molecular Biology, 2022, 2363, 165-181.	0.9	1
2	Two wrongs make a right: heat stress reversion of a  male-sterile <i>Brassica napus</i> line. Journal of Experimental Botany, 2022, , .	4.8	0
3	Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics. Plant Journal, 2020, 101, 420-441.	5.7	152
4	The OXA2a Insertase of Arabidopsis Is Required for Cytochrome <i>c</i> Maturation. Plant Physiology, 2020, 184, 1042-1055.	4.8	4
5	The Plant Mitochondrial TAT Pathway Is Essential for Complex III Biogenesis. Current Biology, 2020, 30, 840-853.e5.	3.9	19

Tissueâ€specific isolation of Arabidopsis/plant mitochondria – IMTACT (isolation of mitochondria) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 $\frac{3}{21}$

7	Arabidopsis DGD1 SUPPRESSOR1 Is a Subunit of the Mitochondrial Contact Site and Cristae Organizing System and Affects Mitochondrial Biogenesis. Plant Cell, 2019, 31, 1856-1878.	6.6	19
8	Assembly of the Complexes of the Oxidative Phosphorylation System in Land Plant Mitochondria. Annual Review of Plant Biology, 2019, 70, 23-50.	18.7	68
9	OXA2b is Crucial for Proper Membrane Insertion of COX2 during Biogenesis of Complex IV in Plant Mitochondria. Plant Physiology, 2019, 179, 601-615.	4.8	17
10	Plant Mitochondrial Inner Membrane Protein Insertion. International Journal of Molecular Sciences, 2018, 19, 641.	4.1	122
11	TOM9.2 Is a Calmodulin-Binding Protein Critical for TOM Complex Assembly but Not for Mitochondrial Protein Import in Arabidopsis thaliana. Molecular Plant, 2017, 10, 575-589.	8.3	9
12	The PPR protein SLOW GROWTH 4 is involved in editing of nad4 and affects the splicing of nad2 intron 1. Plant Molecular Biology, 2017, 93, 355-368.	3.9	35
13	To Mia or not to Mia: stepwise evolution of the mitochondrial intermembrane space disulfide relay. BMC Biology, 2017, 15, 119.	3.8	6
14	Plant mitochondria contain the protein translocase subunits TatB and TatC. Journal of Cell Science, 2016, 129, 3935-3947.	2.0	38
15	Inactivation of Mitochondrial Complex I Induces the Expression of a Twin Cysteine Protein that Targets and Affects Cytosolic, Chloroplastidic and Mitochondrial Function. Molecular Plant, 2016, 9, 696-710.	8.3	28
16	Glutaredoxin S15 Is Involved in Fe-S Cluster Transfer in Mitochondria Influencing Lipoic Acid-Dependent Enzymes, Plant Growth, and Arsenic Tolerance in Arabidopsis. Plant Physiology, 2016, 170, 1284-1299.	4.8	53
17	Identification of cleavage sites and substrate proteins for two mitochondrial intermediate peptidases in Arabidopsis thaliana. Journal of Experimental Botany, 2015, 66, 2691-2708.	4.8	46
18	In Vitro and In Vivo Protein Uptake Studies in Plant Mitochondria. Methods in Molecular Biology, 2015, 1305, 61-81.	0.9	14

CHRIS CARRIE

#	Article	IF	CITATIONS
19	The mitochondrial outer membrane <scp>AAA ATP</scp> ase At <scp>OM</scp> 66 affects cell death and pathogen resistance in <i><scp>A</scp>rabidopsis thaliana</i> . Plant Journal, 2014, 80, 709-727.	5.7	80
20	The dual targeting ability of type II NAD(P)H dehydrogenases arose early in land plant evolution. BMC Plant Biology, 2013, 13, 100.	3.6	24
21	How do plants make mitochondria?. Planta, 2013, 237, 429-439.	3.2	48
22	A reevaluation of dual-targeting of proteins to mitochondria and chloroplasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 253-259.	4.1	141
23	Acquisition, Conservation, and Loss of Dual-Targeted Proteins in Land Plants Â. Plant Physiology, 2013, 161, 644-662.	4.8	71
24	Identification of a Dual-Targeted Protein Belonging to the Mitochondrial Carrier Family That Is Required for Early Leaf Development in Rice Â. Plant Physiology, 2013, 161, 2036-2048.	4.8	25
25	A Membrane-Bound NAC Transcription Factor, ANAC017, Mediates Mitochondrial Retrograde Signaling in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 3450-3471.	6.6	291
26	Subcomplexes of Ancestral Respiratory Complex I Subunits Rapidly Turn Over in Vivo as Productive Assembly Intermediates in Arabidopsis*. Journal of Biological Chemistry, 2013, 288, 5707-5717.	3.4	44
27	Widespread dual targeting of proteins in land plants: When, where, how and why. Plant Signaling and Behavior, 2013, 8, e25034.	2.4	41
28	Cyclin-dependent Kinase E1 (CDKE1) Provides a Cellular Switch in Plants between Growth and Stress Responses. Journal of Biological Chemistry, 2013, 288, 3449-3459.	3.4	121
29	AtPAP2 is a tail-anchored protein in the outer membrane of chloroplasts and mitochondria. Plant Signaling and Behavior, 2012, 7, 927-932.	2.4	39
30	Accumulation of Newly Synthesized F1 in Vivo in Arabidopsis Mitochondria Provides Evidence for Modular Assembly of the Plant F1Fo ATP Synthase. Journal of Biological Chemistry, 2012, 287, 25749-25757.	3.4	23
31	LETM Proteins Play a Role in the Accumulation of Mitochondrially Encoded Proteins in Arabidopsis thaliana and AtLETM2 Displays Parent of Origin Effects. Journal of Biological Chemistry, 2012, 287, 41757-41773.	3.4	54
32	Nucleotide and RNA Metabolism Prime Translational Initiation in the Earliest Events of Mitochondrial Biogenesis during Arabidopsis Germination Â. Plant Physiology, 2012, 158, 1610-1627.	4.8	124
33	Dual Location of the Mitochondrial Preprotein Transporters B14.7 and Tim23-2 in Complex I and the TIM17:23 Complex in <i>Arabidopsis</i> Links Mitochondrial Activity and Biogenesis. Plant Cell, 2012, 24, 2675-2695.	6.6	75
34	A dualâ€ŧargeted purple acid phosphatase in <i>Arabidopsis thaliana</i> moderates carbon metabolism and its overexpression leads to faster plant growth and higher seed yield. New Phytologist, 2012, 194, 206-219.	7.3	70
35	Evidence for a SAL1-PAP Chloroplast Retrograde Pathway That Functions in Drought and High Light Signaling in <i>Arabidopsis</i> À Â Â. Plant Cell, 2011, 23, 3992-4012.	6.6	473
36	The RCC1 family protein RUG3 is required for splicing of <i>nad2</i> and complex I biogenesis in mitochondria of <i>Arabidopsis thaliana</i> . Plant Journal, 2011, 67, 1067-1080.	5.7	113

CHRIS CARRIE

#	Article	IF	CITATIONS
37	Identification of a novel mitochondrial protein, short postembryonic roots 1 (SPR1), involved in root development and iron homeostasis in <i>Oryza sativa</i> . New Phytologist, 2011, 189, 843-855.	7.3	36
38	TCP Transcription Factors Link the Regulation of Genes Encoding Mitochondrial Proteins with the Circadian Clock in <i>Arabidopsis thaliana</i> Â Â. Plant Cell, 2011, 22, 3921-3934.	6.6	164
39	Multiple Lines of Evidence Localize Signaling, Morphology, and Lipid Biosynthesis Machinery to the Mitochondrial Outer Membrane of Arabidopsis Â. Plant Physiology, 2011, 157, 1093-1113.	4.8	90
40	In-Depth Temporal Transcriptome Profiling Reveals a Crucial Developmental Switch with Roles for RNA Processing and Organelle Metabolism That Are Essential for Germination in Arabidopsis Â. Plant Physiology, 2011, 157, 1342-1362.	4.8	207
41	An in silico analysis of the mitochondrial protein import apparatus of plants. BMC Plant Biology, 2010, 10, 249.	3.6	53
42	The Cytoskeleton and the Peroxisomal-Targeted SNOWY COTYLEDON3 Protein Are Required for Chloroplast Development in <i>Arabidopsis</i> Â. Plant Cell, 2010, 22, 3423-3438.	6.6	77
43	Conserved and Novel Functions for Arabidopsis thaliana MIA40 in Assembly of Proteins in Mitochondria and Peroxisomes. Journal of Biological Chemistry, 2010, 285, 36138-36148.	3.4	108
44	Exploring the Function-Location Nexus: Using Multiple Lines of Evidence in Defining the Subcellular Location of Plant Proteins. Plant Cell, 2009, 21, 1625-1631.	6.6	95
45	Defining the Mitochondrial Stress Response in Arabidopsis thaliana. Molecular Plant, 2009, 2, 1310-1324.	8.3	167
46	Approaches to defining dualâ€ŧargeted proteins in Arabidopsis. Plant Journal, 2009, 57, 1128-1139.	5.7	139
47	Protein transport in organelles: Dual targeting of proteins to mitochondria and chloroplasts. FEBS Journal, 2009, 276, 1187-1195.	4.7	140
48	Type II NAD(P)H dehydrogenases are targeted to mitochondria and chloroplasts or peroxisomes in <i>Arabidopsis thaliana</i> . FEBS Letters, 2008, 582, 3073-3079.	2.8	97
49	Differential Gene Expression and Subcellular Targeting of Arabidopsis Glutathione S-Transferase F8 Is Achieved through Alternative Transcription Start Sites. Journal of Biological Chemistry, 2007, 282, 28915-28928.	3.4	69
50	Characterization of the Preprotein and Amino Acid Transporter Gene Family in Arabidopsis. Plant Physiology, 2007, 143, 199-212.	4.8	94
51	Characterization of the Regulatory and Expression Context of an Alternative Oxidase Gene Provides Insights into Cyanide-Insensitive Respiration during Growth and Development. Plant Physiology, 2007, 143, 1519-1533.	4.8	50
52	Functional Definition of Outer Membrane Proteins Involved in Preprotein Import into Mitochondria. Plant Cell, 2007, 19, 3739-3759.	6.6	146
53	Nine 3-ketoacyl-CoA thiolases (KATs) and acetoacetyl-CoA thiolases (ACATs) encoded by five genes in Arabidopsis thaliana are targeted either to peroxisomes or cytosol but not to mitochondria. Plant Molecular Biology, 2006, 63, 97-108.	3.9	98