Shou-Jun Xiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4426029/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	2D DNA lattices assembled from DX-coupled tiles. Journal of Colloid and Interface Science, 2022, 616, 499-508.	9.4	5
2	Regulation of 2D DNA Nanostructures by the Coupling of Intrinsic Tile Curvature and Arm Twist. Journal of the American Chemical Society, 2022, 144, 6759-6769.	13.7	8
3	Two-layer stacked multi-arm junction tiles and nanostructures assembled with small circular DNA molecules serving as scaffolds. Nanoscale, 2020, 12, 19597-19603.	5.6	6
4	Small Circular DNA Molecules as Triangular Scaffolds for the Growth of 3D Single Crystals. Biomolecules, 2020, 10, 814.	4.0	2
5	DNA dumbbell tiles with uneven widths for 2D arrays. Organic and Biomolecular Chemistry, 2019, 17, 1277-1283.	2.8	4
6	Stable DNA Motifs, 1D and 2D Nanostructures Constructed from Small Circular DNA Molecules. Journal of Visualized Experiments, 2019, , .	0.3	2
7	2D DNA lattice arrays assembled from DNA dumbbell tiles using poly(A-T)-rich stems. Nanoscale, 2019, 11, 22216-22221.	5.6	10
8	Construction of a Holliday Junction in Small Circular DNA Molecules for Stable Motifs and Twoâ€Dimensional Lattices. ChemBioChem, 2018, 19, 1379-1385.	2.6	15
9	DNA nanotubes assembled from tensegrity triangle tiles with circular DNA scaffolds. Nanoscale, 2017, 9, 17181-17185.	5.6	17
10	Selfâ€Assembly of DNA Nanostructures Using Threeâ€Way Junctions on Small Circular DNAs. ChemNanoMat, 2017, 3, 740-744.	2.8	4
11	Assembling RNA Nanoparticles. Methods in Molecular Biology, 2017, 1500, 81-96.	0.9	0
12	Inâ€Phase Assembly of Slim DNA Lattices with Small Circular DNA Motifs via Short Connections of 11 and 16 Base Pairs. ChemBioChem, 2016, 17, 1132-1137.	2.6	9
13	How Small DNA Minicircles Can Be Applied to Construct DNA Nanotubes?. Chinese Journal of Chemistry, 2016, 34, 326-330.	4.9	5
14	Growing Embossed Nanostructures of Polymer Brushes on Wet-Etched Silicon Templated via Block Copolymers. Scientific Reports, 2016, 6, 20291.	3.3	3
15	2D DNA lattices constructed from two-tile DAE-O systems possessing circular central strands. Nanoscale, 2016, 8, 18870-18875.	5.6	20
16	EDC/NHS activation mechanism of polymethacrylic acid: anhydride versus NHS-ester. RSC Advances, 2015, 5, 69939-69947.	3.6	63
17	Light-driven reversible strand displacement using glycerol azobenzene inserted DNA. RSC Advances, 2015, 5, 5055-5058.	3.6	14
18	Periodical assembly of repetitive RNA sequences synthesized by rolling circle transcription with short DNA staple strands to RNA–DNA hybrid nanowires. Chemical Communications, 2014, 50, 2100.	4.1	13

Shou-Jun Xiao

#	Article	IF	CITATIONS
19	Small Circular DNA Molecules Act as Rigid Motifs To Build DNA Nanotubes. Journal of the American Chemical Society, 2014, 136, 10194-10197.	13.7	42
20	RCA Strands as Scaffolds To Create Nanoscale Shapes by a Few Staple Strands. Journal of the American Chemical Society, 2013, 135, 2959-2962.	13.7	63
21	Highly Efficient Roomâ€Temperature Photoresponsive DNA Tethering Azobenzene Through Backboneâ€Inserted Glycerol via Ether Bond. Small, 2013, 9, 3939-3943.	10.0	28
22	Different EDC/NHS Activation Mechanisms between PAA and PMAA Brushes and the Following Amidation Reactions. Langmuir, 2011, 27, 12058-12068.	3.5	220
23	Saccharide- and temperature-responsive polymer brushes grown on gold nanoshells for controlled release of diols. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 386, 131-134.	4.7	22
24	Construction of multiple generation nitriloacetates from poly(PEGMA) brushes on planar silicon surface for enhancement of protein loading. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1462-1470.	1.8	10
25	Microwave irradiated click reactions on silicon surfaces via derivertization of covalently grafted poly(PEGMA) brushes. Journal of Colloid and Interface Science, 2011, 358, 116-122.	9.4	32
26	Constructing polyamidoamine dendrons from poly(poly(ethylene glycol) monomethacrylate) brushes grafted from planar silicon hydride surfaces for biomedical applications. Surface Science, 2011, 605, 1106-1113.	1.9	8
27	Enhanced protein loading on a planar Si(111)–H surface with second generation NTA. Surface Science, 2010, 604, 1315-1319.	1.9	21
28	A proximity-based programmable DNA nanoscale assembly line. Nature, 2010, 465, 202-205.	27.8	759
29	Multiple Transmissionâ^'Reflection Infrared (MTR-IR) Spectroscopy of Arachidic Acid LB Films on Hydrophilic and Hydrophobic Silicon Surfaces. Journal of Physical Chemistry C, 2010, 114, 333-341.	3.1	12
30	A 4-connected anionic metal–organic nanotube constructed from indium isophthalate. CrystEngComm, 2010, 12, 3385.	2.6	29
31	AFM and Multiple Transmission-Reflection Infrared Spectroscopy (MTR-IR) Studies on Formation of Air-Stable Supported Lipid Bilayers. International Journal of Molecular Sciences, 2009, 10, 1407-1418.	4.1	5
32	Electroless plating of silver nanoparticles on porous silicon for laser desorption/ionization mass spectrometry. International Journal of Mass Spectrometry, 2009, 281, 1-7.	1.5	30
33	Macroporous silicon templated from silicon nanocrystallite and functionalized SiH reactive group for grafting organic monolayer. Journal of Colloid and Interface Science, 2009, 336, 723-729.	9.4	13
34	Gel-pad microarrays templated by patterned porous silicon for dual-mode detection of proteins. Lab on A Chip, 2009, 9, 756.	6.0	51
35	Structural Evolution of Selfâ€Assembled Alkanephosphate Monolayers on TiO ₂ . ChemPhysChem, 2008, 9, 1979-1981.	2.1	29
36	Multiple Transmissionâ^'Reflection Infrared Spectroscopy for High-Sensitivity Measurement of Molecular Monolayers on Silicon Surfaces, Journal of Physical Chemistry A, 2008, 112, 12372-12377	2.5	32

Shou-Jun Xiao

#	Article	IF	CITATIONS
37	Preparation of organic monolayers with azide on porous silicon via Si–N bonds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 305, 66-75.	4.7	18
38	Grazing Angle Mirror-Backed Reflection (GMBR) for Infrared Analysis of Monolayers on Silicon. Journal of Physical Chemistry B, 2006, 110, 17702-17705.	2.6	14
39	Biofunctionalisation of porous silicon (PS) surfaces by using homobifunctional cross-linkers. Journal of Materials Chemistry, 2006, 16, 570-578.	6.7	44
40	Stability improvement of porous silicon surface structures by grafting polydimethylsiloxane polymer monolayers. Thin Solid Films, 2005, 474, 306-309.	1.8	38
41	Surface reactions of 4-aminothiophenol with heterobifunctional crosslinkers bearing both succinimidyl ester and maleimide for biomolecular immobilization. Journal of Colloid and Interface Science, 2005, 290, 172-183.	9.4	29
42	Reaction of Porous Silicon with Both End-Functionalized Organic Compounds Bearing α-Bromo and ω-Carboxy Groups for Immobilization of Biomolecules. Journal of Physical Chemistry B, 2005, 109, 20620-20628.	2.6	55
43	Reactions of Surface Amines with Heterobifunctional Cross-Linkers Bearing Both Succinimidyl Ester and Maleimide for Grafting Biomolecules. Journal of Physical Chemistry B, 2004, 108, 16508-16517.	2.6	72
44	Covalent Attachment of Cell-Adhesive, (Arg-Gly-Asp)-Containing Peptides to Titanium Surfaces. Langmuir, 1998, 14, 5507-5516.	3.5	291