Renato Spahni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4425719/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Supporting evidence from the EPICA Dronning Maud Land ice core for atmospheric CO ₂ changes during the past millennium. Tellus, Series B: Chemical and Physical Meteorology, 2022, 57, 51.	0.8	50
2	Past and future carbon fluxes from land use change, shifting cultivation and wood harvest. Tellus, Series B: Chemical and Physical Meteorology, 2022, 66, 23188.	0.8	71
3	N ₂ O changes from the Last Glacial Maximum to the preindustrial – PartA2: terrestrial N ₂ O emissions and carbon–nitrogen cycle interactions. Biogeosciences, 2020, 17, 3511-3543.	1.3	7
4	N ₂ O changes from the Last Glacial Maximum to the preindustrial – Part 1: Quantitative reconstruction of terrestrial and marine emissions using N ₂ O stable isotopes in ice cores. Biogeosciences, 2019, 16, 3997-4021.	1.3	12
5	A Combined Tree Ring and Vegetation Model Assessment of European Forest Growth Sensitivity to Interannual Climate Variability. Global Biogeochemical Cycles, 2018, 32, 1226-1240.	1.9	54
6	Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics. Environmental Research Letters, 2017, 12, 094013.	2.2	129
7	Variability and quasi-decadal changes in the methane budget over the period 2000–2012. Atmospheric Chemistry and Physics, 2017, 17, 11135-11161.	1.9	85
8	Global methane emission estimates for 2000–2012 from CarbonTracker Europe-CH ₄ v1.0. Geoscientific Model Development, 2017, 10, 1261-1289.	1.3	40
9	Simulating oxygen isotope ratios in tree ring cellulose using a dynamic global vegetation model. Biogeosciences, 2016, 13, 3869-3886.	1.3	23
10	Application of eco-physiological models to the climatic interpretation of δ13C and δ18O measured in Siberian larch tree-rings. Dendrochronologia, 2016, 39, 51-59.	1.0	21
11	Past and future evolution of <i>Abies alba</i> forests in Europe – comparison of a dynamic vegetation model with palaeo data and observations. Global Change Biology, 2016, 22, 727-740.	4.2	70
12	Comparative carbon cycle dynamics of the present and last interglacial. Quaternary Science Reviews, 2016, 137, 15-32.	1.4	26
13	The global methane budget 2000–2012. Earth System Science Data, 2016, 8, 697-751.	3.7	824
14	Natural and anthropogenic methane fluxes in Eurasia: a mesoscale quantification by generalized atmospheric inversion. Biogeosciences, 2015, 12, 5393-5414.	1.3	31
15	WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia. Biogeosciences, 2015, 12, 3321-3349.	1.3	81
16	Retrieving the paleoclimatic signal from the deeper part of the EPICA Dome C ice core. Cryosphere, 2015, 9, 1633-1648.	1.5	32
17	Methane emissions from floodplains in the Amazon Basin: challenges in developing a process-based model for global applications. Biogeosciences, 2014, 11, 1519-1558.	1.3	43
18	NGRIP CH ₄ concentration from 120 to 10 kyr before present and its relation to a δ ¹⁵ N temperature reconstruction from the same ice core. Climate of the Past, 2014, 10, 903-920.	1.3	61

Renato Spahni

#	Article	IF	CITATIONS
19	Spatial variability and temporal trends in waterâ€use efficiency of European forests. Global Change Biology, 2014, 20, 3700-3712.	4.2	175
20	lsotopic constraints on marine and terrestrial N2O emissions during the last deglaciation. Nature, 2014, 516, 234-237.	13.7	38
21	DYPTOP: a cost-efficient TOPMODEL implementation to simulate sub-grid spatio-temporal dynamics of global wetlands and peatlands. Geoscientific Model Development, 2014, 7, 3089-3110.	1.3	69
22	Long-Term Climate Change Commitment and Reversibility: An EMIC Intercomparison. Journal of Climate, 2013, 26, 5782-5809.	1.2	208
23	Independent variations of CH4 emissions and isotopic composition over the past 160,000 years. Nature Geoscience, 2013, 6, 885-890.	5.4	54
24	Three decades of global methane sources and sinks. Nature Geoscience, 2013, 6, 813-823.	5.4	1,649
25	Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nature Climate Change, 2013, 3, 666-672.	8.1	209
26	Impact of an abrupt cooling event on interglacial methane emissions in northern peatlands. Biogeosciences, 2013, 10, 1963-1981.	1.3	30
27	Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience, 2013, 6, 597-607.	5.4	937
28	Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences, 2013, 10, 753-788.	1.3	475
29	Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP). Geoscientific Model Development, 2013, 6, 617-641.	1.3	165
30	Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity. Climate of the Past, 2013, 9, 1111-1140.	1.3	157
31	Transient simulations of the carbon and nitrogen dynamics in northern peatlands: from the Last Glacial Maximum to the 21st century. Climate of the Past, 2013, 9, 1287-1308.	1.3	102
32	Modelling terrestrial nitrous oxide emissions and implications for climate feedback. New Phytologist, 2012, 196, 472-488.	3.5	106
33	High-resolution interpolar difference of atmospheric methane around the Last Glacial Maximum. Biogeosciences, 2012, 9, 3961-3977.	1.3	54
34	Constraining global methane emissions and uptake by ecosystems. Biogeosciences, 2011, 8, 1643-1665.	1.3	202
35	Patterns of millennial variability over the last 500 ka. Climate of the Past, 2010, 6, 295-303.	1.3	26
36	Hydrogen Isotopes Preclude Marine Hydrate CH ₄ Emissions at the Onset of Dansgaard-Oeschger Events. Science, 2010, 328, 1686-1689.	6.0	69

RENATO SPAHNI

#	Article	IF	CITATIONS
37	Atmospheric nitrous oxide during the last 140,000years. Earth and Planetary Science Letters, 2010, 300, 33-43.	1.8	154
38	Glacial–interglacial and millennial-scale variations in the atmospheric nitrous oxide concentration during the last 800,000 years. Quaternary Science Reviews, 2010, 29, 182-192.	1.4	163
39	Changing boreal methane sources and constant biomass burning during the last termination. Nature, 2008, 452, 864-867.	13.7	173
40	Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature, 2008, 453, 383-386.	13.7	840
41	Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 1425-1430.	3.3	366
42	The EDC3 chronology for the EPICA Dome C ice core. Climate of the Past, 2007, 3, 485-497.	1.3	396
43	Marine Isotope Stage (MIS) 8 millennial variability stratigraphically identical to MIS 3. Paleoceanography, 2007, 22, n/a-n/a.	3.0	19
44	Anomalous flow below 2700 m in the EPICA Dome C ice core detected using Î ¹⁸ O of atmospheric oxygen measurements. Climate of the Past, 2007, 3, 341-353.	1.3	74
45	New constraints on the gas age-ice age difference along the EPICA ice cores, 0–50 kyr. Climate of the Past, 2007, 3, 527-540.	1.3	110
46	Synchronization of ice core records via atmospheric gases. Climate of the Past, 2007, 3, 325-330.	1.3	70
47	Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years. Science, 2007, 317, 793-796.	6.0	1,880
48	Evidence for molecular size dependent gas fractionation in firn air derived from noble gases, oxygen, and nitrogen measurements. Earth and Planetary Science Letters, 2006, 243, 61-73.	1.8	71
49	lsotope calibrated Greenland temperature record over Marine Isotope Stage 3 and its relation to CH4. Earth and Planetary Science Letters, 2006, 243, 504-519.	1.8	338
50	Using a maximum simplicity paleoclimate model to simulate millennial variability during the last four glacial periods. Quaternary Science Reviews, 2006, 25, 3185-3197.	1.4	30
51	Supporting evidence from the EPICA Dronning Maud Land ice core for atmospheric CO2 changes during the past millennium. Tellus, Series B: Chemical and Physical Meteorology, 2005, 57, 51-57.	0.8	71
52	Atmospheric Methane and Nitrous Oxide of the Late Pleistocene from Antarctic Ice Cores. Science, 2005, 310, 1317-1321.	6.0	424
53	N2O and CH4variations during the last glacial epoch: Insight into global processes. Global Biogeochemical Cycles, 2004, 18, n/a-n/a.	1.9	171
54	The attenuation of fast atmospheric CH4variations recorded in polar ice cores. Geophysical Research Letters, 2003, 30, .	1.5	126