Rafael Dalmau

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4425639/publications.pdf

Version: 2024-02-01

49 papers

1,369 citations

430442 18 h-index 35 g-index

50 all docs 50 docs citations

50 times ranked

1116 citing authors

#	Article	IF	CITATIONS
1	Prismatic Slip in AlN Crystals Grown By PVT. ECS Transactions, 2021, 104, 57-64.	0.3	2
2	(Invited) Complex Relative Permittivity of UV-C Transparent AlN. ECS Transactions, 2021, 104, 49-56.	0.3	1
3	Prismatic Slip in AlN Crystals Grown By PVT. ECS Meeting Abstracts, 2021, MA2021-02, 987-987.	0.0	O
4	(Invited) Complex Relative Permittivity of UV-C Transparent AlN. ECS Meeting Abstracts, 2021, MA2021-02, 986-986.	0.0	0
5	Study of Dislocations in Homoepitaxially and Heteroepitaxially Grown AlN Layers. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000465.	0.8	3
6	Hydride vapor phase epitaxy of Si-doped AlN layers using SiCl4 as a doping gas. Journal of Crystal Growth, 2020, 545, 125730.	0.7	3
7	(Invited) Insights into the UV-C Optical Absorption of AlN Substrates Grown by PVT. ECS Transactions, 2020, 98, 3-11.	0.3	1
8	(Invited) Insights into the UV-C Optical Absorption of AlN Substrates Grown by PVT. ECS Meeting Abstracts, 2020, MA2020-02, 1802-1802.	0.0	0
9	Influences of screw dislocations on electroluminescence of AlGaN/AlN-based UVC LEDs. AIP Advances, 2019, 9, .	0.6	11
10	P-type silicon as hole supplier for nitride-based UVC LEDs. New Journal of Physics, 2019, 21, 023011.	1.2	16
11	<i>(Invited)</i> X-Ray Metrology of AlN Single Crystal Substrates. ECS Transactions, 2019, 92, 113-121.	0.3	4
12	(Invited) X-Ray Metrology of AlN Single Crystal Substrates. ECS Meeting Abstracts, 2019, , .	0.0	1
13	229 nm UV LEDs on aluminum nitride single crystal substrates using p-type silicon for increased hole injection. Applied Physics Letters, 2018, 112, .	1.5	52
14	<i>(i)(Invited) </i> Polarization-Induced Doping in Graded AlGaN Epilayers Grown on AlN Single Crystal Substrates. ECS Transactions, 2018, 86, 31-40.	0.3	26
15	226 nm AlGaN/AlN UV LEDs using p-type Si for hole injection and UV reflection. Applied Physics Letters, 2018, 113, .	1.5	59
16	(Invited) Polarization-Induced Doping in Graded AlGaN Epilayers Grown on AlN Single Crystal Substrates. ECS Meeting Abstracts, 2018, , .	0.0	0
17	(Invited) Progress and Challenges of AlGaN Schottky Diodes Grown on AlN Substrates. ECS Transactions, 2017, 80, 217-226.	0.3	6
18	Single crystal AlN substrates for AlGaN-based UV optoelectronics. , 2017, , .		5

#	Article	IF	Citations
19	(Invited) Progress and Challenges of AlGaN Schottky Diodes Grown on AlN Substrates. ECS Meeting Abstracts, 2017, MA2017-02, 1342-1342.	0.0	1
20	Influence of high-temperature processing on the surface properties of bulk AIN substrates. Journal of Crystal Growth, 2016, 446, 33-38.	0.7	12
21	High-temperature electromechanical characterization of AlN single crystals. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 1880-1887.	1.7	63
22	The role of the carbon-silicon complex in eliminating deep ultraviolet absorption in AlN. Applied Physics Letters, 2014, 104, .	1.5	59
23	Characterization of Threading Dislocations in PVT-Grown AlN Substrates via x-Ray Topography and Ray Tracing Simulation. Journal of Electronic Materials, 2014, 43, 838-842.	1.0	29
24	Vacancy compensation and related donor-acceptor pair recombination in bulk AlN. Applied Physics Letters, 2013, 103, .	1.5	80
25	Deep-Ultraviolet Light-Emitting Diodes Fabricated on AlN Substrates Prepared by Hydride Vapor Phase Epitaxy. Applied Physics Express, 2012, 5, 122101.	1.1	114
26	On the origin of the 265 nm absorption band in AlN bulk crystals. Applied Physics Letters, 2012, 100, .	1.5	137
27	Preparation of a Freestanding AlN Substrate from a Thick AlN Layer Grown by Hydride Vapor Phase Epitaxy on a Bulk AlN Substrate Prepared by Physical Vapor Transport. Applied Physics Express, 2012, 5, 055504.	1.1	121
28	265 nm Light Emitting Diodes on AlN Single Crystal Substrates: Growth and Characterization. , 2011, , .		1
29	Characterization of dislocation arrays in AlN single crystals grown by PVT. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 1545-1547.	0.8	37
30	Progress on nâ€type doping of AlGaN alloys on AlN single crystal substrates for UV optoelectronic applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2031-2033.	0.8	153
31	Ni/Au Schottky diodes on Al _x Ga _{1â€x} N (0.7<x<1) grown on AlN single crystal substrates. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2407-2409.	0.8	37
32	Impact of gallium supersaturation on the growth of Nâ€polar GaN. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 2078-2080.	0.8	24
33	Implementation of the GaN lateral polarity junction in a MESFET utilizing polar doping selectivity. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 45-48.	0.8	19
34	X-ray characterization of composition and relaxation of AlxGalâ^xxN(â‰蔣â‰華) layers grown on GaN/sapphire templates by low pressure organometallic vapor phase epitaxy. Journal of Applied Physics, 2010, 108, .	1.1	30
35	Growth and Characterization of AlN and AlGaN Epitaxial Films on AlN Single Crystal Substrates. ECS Transactions, 2010, 33, 43-54.	0.3	6
36	AlN Bulk Crystal Growth by Physical Vapor Transport. , 2010, , 821-843.		19

#	Article	lF	CITATIONS
37	Fabrication of a GaN p/n lateral polarity junction by polar doping selectivity. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, $1977-1979$.	0.8	8
38	Growth of highly resistive Ga-polar GaN by LP-MOVPE. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 2260-2263.	0.8	8
39	Characterization of bulk grown GaN and AlN single crystal materials. Journal of Crystal Growth, 2006, 287, 349-353.	0.7	20
40	Structural Characterization of Bulk AlN Single Crystals Grown from Self-Seeding and Seeding by SiC Substrates. Materials Science Forum, 2006, 527-529, 1521-1524.	0.3	3
41	The growth and optical properties of large, high-quality AlN single crystals. Journal of Applied Physics, 2004, 96, 5870-5876.	1.1	92
42	Synchrotron white beam x-ray topography (SWBXT) and high resolution triple axis diffraction studies on AlN layers grown on 4H- and 6H-SiC seeds. Materials Research Society Symposia Proceedings, 2004, 831, 631.	0.1	0
43	Crucible Selection in AlN Bulk Crystal Growth. Materials Research Society Symposia Proceedings, 2003, 798, 361.	0.1	4
44	Synchrotron white beam topography characterization of physical vapor transport grown AIN and ammonothermal GaN. Journal of Crystal Growth, 2002, 246, 271-280.	0.7	24
45	Growth of AlN bulk crystals from the vapor phase. Materials Research Society Symposia Proceedings, 2001, 693, 780.	0.1	12
46	Low Defect Density Bulk AlN Substrates for High Performance Electronics and Optoelectronics. Materials Science Forum, 0, 717-720, 1287-1290.	0.3	26
47	Defect Generation Mechanisms in PVT-Grown AlN Single Crystal Boules. Materials Science Forum, 0, 740-742, 91-94.	0.3	14
48	High Quality AlN Single Crystal Substrates for AlGaN-Based Devices. Materials Science Forum, 0, 924, 923-926.	0.3	19
49	X-Ray Topography Characterization of Large Diameter AlN Single Crystal Substrates. Materials Science Forum, 0, 1004, 63-68.	0.3	7