Mitsuru Naito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4424968/publications.pdf

Version: 2024-02-01

393982 1,669 44 citations papers

19 40 h-index g-index 48 48 48 2310 all docs docs citations times ranked citing authors

288905

#	Article	IF	CITATIONS
1	Fine-tuning of polyaspartamide derivatives with alicyclic moieties for systemic mRNA delivery. Journal of Controlled Release, 2022, 342, 148-156.	4.8	10
2	Starâ€Polymer–DNA Gels Showing Highly Predictable and Tunable Mechanical Responses. Advanced Materials, 2022, 34, e2108818.	11.1	14
3	Bridging mRNA and Polycation Using RNA Oligonucleotide Derivatives Improves the Robustness of Polyplex Micelles for Efficient mRNA Delivery. Advanced Healthcare Materials, 2022, 11, e2102016.	3.9	17
4	Dynamic Stabilization of Unit Polyion Complexes Incorporating Small Interfering RNA by Fine-Tuning of Cationic Block Length in Two-Branched Poly(ethylene glycol)- <i>b</i> -biomacromolecules, 2022, 23, 388-397.	2.6	3
5	Experimental Comparison of Bond Lifetime and Viscoelastic Relaxation in Transient Networks with Well-Controlled Structures. ACS Macro Letters, 2022, 11, 753-759.	2.3	8
6	Halofuginone micelle nanoparticles eradicate Nrf2-activated lung adenocarcinoma without systemic toxicity. Free Radical Biology and Medicine, 2022, 187, 92-104.	1.3	5
7	Size-tunable PEG-grafted copolymers as a polymeric nanoruler for passive targeting muscle tissues. Journal of Controlled Release, 2022, 347, 607-614.	4.8	6
8	mRNA loading into ATP-responsive polyplex micelles with optimal density of phenylboronate ester crosslinking to balance robustness in the biological milieu and intracellular translational efficiency. Journal of Controlled Release, 2021, 330, 317-328.	4.8	37
9	Structural tuning of oligonucleotides for enhanced blood circulation properties of unit polyion complexes prepared from two-branched poly(ethylene glycol)-block-poly(l-lysine). Journal of Controlled Release, 2021, 330, 812-820.	4.8	15
10	Cancer-Specific Targeting of Taurine-Upregulated Gene 1 Enhances the Effects of Chemotherapy in Pancreatic Cancer. Cancer Research, 2021, 81, 1654-1666.	0.4	22
11	Polydopamineâ€Mediated Surface Functionalization of Exosomes. ChemNanoMat, 2021, 7, 592-595.	1.5	8
12	PEGylation of mRNA by Hybridization of Complementary PEG-RNA Oligonucleotides Stabilizes mRNA without Using Cationic Materials. Pharmaceutics, 2021, 13, 800.	2.0	11
13	Block catiomer with flexible cationic segment enhances complexation with siRNA and the delivery performance in vitro. Science and Technology of Advanced Materials, 2021, 22, 850-863.	2.8	6
14	Bioinspired Silicification of mRNA-Loaded Polyion Complexes for Macrophage-Targeted mRNA Delivery. ACS Applied Bio Materials, 2021, 4, 7790-7799.	2.3	7
15	Photo-reactive oligodeoxynucleotide-embedded nanovesicles (PROsomes) with switchable stability for efficient cellular uptake and gene knockdown. Chemical Communications, 2020, 56, 9477-9480.	2.2	2
16	Noncovalent Stabilization of Vesicular Polyion Complexes with Chemically Modified/Single-Stranded Oligonucleotides and PEG- <i>b</i> guanidinylated Polypeptides for Intracavity Encapsulation of Effector Enzymes Aimed at Cooperative Gene Knockdown. Biomacromolecules, 2020, 21, 4365-4376.	2.6	17
17	Systemic Brain Delivery of Antisense Oligonucleotides across the Blood–Brain Barrier with a Glucoseâ€Coated Polymeric Nanocarrier. Angewandte Chemie - International Edition, 2020, 59, 8173-8180.	7.2	113
18	A 50â€nmâ€Sized Micellar Assembly of Thermoresponsive Polymerâ€Antisense Oligonucleotide Conjugates for Enhanced Gene Knockdown in Lung Cancer by Intratracheal Administration. Advanced Therapeutics, 2020, 3, 1900123.	1.6	5

#	Article	IF	CITATIONS
19	Systemic Brain Delivery of Antisense Oligonucleotides across the Blood–Brain Barrier with a Glucoseâ€Coated Polymeric Nanocarrier. Angewandte Chemie, 2020, 132, 8250-8257.	1.6	10
20	Installation of a Thermoswitchable Hydrophobic Domain into a Unimer Polyion Complex for Enhanced Cellular Uptake of siRNA. Bioconjugate Chemistry, 2020, 31, 1320-1326.	1.8	4
21	Proliferationâ€associated long noncoding RNA, <i>TMPOâ€AS1</i> , is a potential therapeutic target for tripleâ€negative breast cancer. Cancer Science, 2020, 111, 2440-2450.	1.7	26
22	Dually Stabilized Triblock Copolymer Micelles with Hydrophilic Shell and Hydrophobic Interlayer for Systemic Antisense Oligonucleotide Delivery to Solid Tumor. ACS Biomaterials Science and Engineering, 2019, 5, 5770-5780.	2.6	21
23	Bundling mRNA Strands to Prepare Nanoâ€Assemblies with Enhanced Stability Towards RNase for Inâ€Vivo Delivery. Angewandte Chemie - International Edition, 2019, 58, 11360-11363.	7.2	40
24	Bundling mRNA Strands to Prepare Nanoâ€Assemblies with Enhanced Stability Towards RNase for Inâ€Vivo Delivery. Angewandte Chemie, 2019, 131, 11482-11485.	1.6	5
25	Tunable nonenzymatic degradability of <i>N</i> -substituted polyaspartamide main chain by amine protonation and alkyl spacer length in side chains for enhanced messenger RNA transfection efficiency. Science and Technology of Advanced Materials, 2019, 20, 105-115.	2.8	13
26	Self-Assembly of siRNA/PEG- <i>b</i> -Catiomer at Integer Molar Ratio into 100 nm-Sized Vesicular Polyion Complexes (siRNAsomes) for RNAi and Codelivery of Cargo Macromolecules. Journal of the American Chemical Society, 2019, 141, 3699-3709.	6.6	54
27	Induced packaging of mRNA into polyplex micelles by regulated hybridization with a small number of cholesteryl RNA oligonucleotides directed enhanced in vivo transfection. Biomaterials, 2019, 197, 255-267.	5.7	50
28	Glucose-linked sub-50-nm unimer polyion complex-assembled gold nanoparticles for targeted siRNA delivery to glucose transporter 1-overexpressing breast cancer stem-like cells. Journal of Controlled Release, 2019, 295, 268-277.	4.8	82
29	An Ethylenediamineâ€based Switch to Render the Polyzwitterion Cationic at Tumorous pH for Effective Tumor Accumulation of Coated Nanomaterials. Angewandte Chemie - International Edition, 2018, 57, 5057-5061.	7.2	42
30	Enhanced Intracellular Delivery of siRNA by Controlling ATPâ€Responsivity of Phenylboronic Acidâ€Functionalized Polyion Complex Micelles. Macromolecular Bioscience, 2018, 18, 1700357.	2.1	34
31	An Ethylenediamineâ€based Switch to Render the Polyzwitterion Cationic at Tumorous pH for Effective Tumor Accumulation of Coated Nanomaterials. Angewandte Chemie, 2018, 130, 5151-5155.	1.6	5
32	Tuned Density of Anti-Tissue Factor Antibody Fragment onto siRNA-Loaded Polyion Complex Micelles for Optimizing Targetability into Pancreatic Cancer Cells. Biomacromolecules, 2018, 19, 2320-2329.	2.6	34
33	Functionalization of silica nanoparticles for nucleic acid delivery. Nano Research, 2018, 11, 5219-5239.	5.8	41
34	Multilayered polyion complexes with dissolvable silica layer covered by controlling densities of cRGD-conjugated PEG chains for cancer-targeted siRNA delivery. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1109-1123.	1.9	5
35	Polyplex Micelles with Phenylboronate/Gluconamide Cross-Linking in the Core Exerting Promoted Gene Transfection through Spatiotemporal Responsivity to Intracellular pH and ATP Concentration. Journal of the American Chemical Society, 2017, 139, 18567-18575.	6.6	71
36	Targeting the Notch-regulated non-coding RNA TUG1 for glioma treatment. Nature Communications, 2016, 7, 13616.	5.8	267

#	Article	IF	CITATIONS
37	Targeted systemic delivery of siRNA to cervical cancer model using cyclic RGD-installed unimer polyion complex-assembled gold nanoparticles. Journal of Controlled Release, 2016, 244, 247-256.	4.8	87
38	siRNA-Loaded Polyion Complex Micelle Decorated with Charge-Conversional Polymer Tuned to Undergo Stepwise Response to Intra-Tumoral and Intra-Endosomal pHs for Exerting Enhanced RNAi Efficacy. Biomacromolecules, 2016, 17, 246-255.	2.6	48
39	Systemic delivery of siRNA by actively targeted polyion complex micelles for silencing the E6 and E7 human papillomavirus oncogenes. Journal of Controlled Release, 2016, 231, 29-37.	4.8	42
40	Enhanced target recognition of nanoparticles by cocktail PEGylation with chains of varying lengths. Chemical Communications, 2016, 52, 1517-1519.	2.2	31
41	Regulated protonation of polyaspartamide derivatives bearing repeated aminoethylene side chains for efficient intracellular siRNA delivery with minimal cytotoxicity. Chemical Communications, 2015, 51, 3158-3161.	2.2	19
42	Actively-targeted polyion complex micelles stabilized by cholesterol and disulfide cross-linking for systemic delivery of siRNA to solid tumors. Biomaterials, 2014, 35, 7887-7895.	5.7	113
43	Rýcktitelbild: A Phenylboronate-Functionalized Polyion Complex Micelle for ATP-Triggered Release of siRNA (Angew. Chem. 43/2012). Angewandte Chemie, 2012, 124, 11062-11062.	1.6	O
44	A Phenylboronateâ€Functionalized Polyion Complex Micelle for ATPâ€Triggered Release of siRNA. Angewandte Chemie - International Edition, 2012, 51, 10751-10755.	7.2	200