Sadamichi Maekawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4424917/publications.pdf

Version: 2024-02-01

698 papers 33,333 citations

88 h-index 165 g-index

715 all docs

715 docs citations

715 times ranked

13511 citing authors

#	Article	IF	CITATIONS
1	Observation of the spin Seebeck effect. Nature, 2008, 455, 778-781.	27.8	1,858
2	Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature, 2010, 464, 262-266.	27.8	1,364
3	Spin Seebeck insulator. Nature Materials, 2010, 9, 894-897.	27.5	1,088
4	Room-Temperature Reversible Spin Hall Effect. Physical Review Letters, 2007, 98, 156601.	7.8	908
5	Thermopower in cobalt oxides. Physical Review B, 2000, 62, 6869-6872.	3.2	743
6	Observation of longitudinal spin-Seebeck effect in magnetic insulators. Applied Physics Letters, 2010, 97, 172505.	3.3	636
7	Theory of magnon-driven spin Seebeck effect. Physical Review B, 2010, 81, .	3.2	557
8	Electric Manipulation of Spin Relaxation Using the Spin Hall Effect. Physical Review Letters, 2008, 101, 036601.	7.8	547
9	Inverse spin-Hall effect induced by spin pumping in metallic system. Journal of Applied Physics, 2011, 109,	2.5	438
10	Spin injection and detection in magnetic nanostructures. Physical Review B, 2003, 67, .	3.2	409
11	Theory of tunneling magnetoresistance in granular magnetic films. Physical Review B, 1996, 53, R11927-R11929.	3.2	395
12	Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices. Nature Materials, 2008, 7, 125-129.	27.5	376
13	Theory of the spin Seebeck effect. Reports on Progress in Physics, 2013, 76, 036501.	20.1	374
14	Electron tunneling between ferromagnetic films. IEEE Transactions on Magnetics, 1982, 18, 707-708.	2.1	367
15	Observation of Spin-Charge Separation in One-Dimensional SrCuO2. Physical Review Letters, 1996, 77, 4054-4057.	7.8	355
16	Apex oxygen and critical temperature in copper oxide superconductors: Universal correlation with the stability of local singlets. Physical Review B, 1991, 43, 2968-2982.	3.2	338
17	Electrically tunable spin injector free from the impedance mismatch problem. Nature Materials, 2011, 10, 655-659.	27.5	324
18	Enhanced Magnetoresistance in Insulating Granular Systems: Evidence for Higher-Order Tunneling. Physical Review Letters, 1998, 81, 2799-2802.	7.8	323

#	Article	IF	CITATIONS
19	Magnetoresistance in Two-Dimensional Disordered Systems: Effects of Zeeman Splitting and Spin-Orbit Scattering. Journal of the Physical Society of Japan, 1981, 50, 2516-2524.	1.6	307
20	Kondo Effect in Quantum Dots Coupled to Ferromagnetic Leads. Physical Review Letters, 2003, 91, 127203.	7.8	300
21	Effect of Coulomb Blockade on Magnetoresistance in Ferromagnetic Tunnel Junctions. Physical Review Letters, 1998, 80, 1758-1761.	7.8	291
22	Localization Effects in Two-Dimensional Superconductors. Journal of the Physical Society of Japan, 1982, 51, 1380-1385.	1.6	287
23	Quantum Transport and Surface Scattering. Physical Review Letters, 1986, 57, 2760-2763.	7.8	287
24	Electronic states and magnetic properties of edge-sharing Cu-O chains. Physical Review B, 1998, 57, 5326-5335.	3.2	281
25	Transition between Two Ferromagnetic States Driven by Orbital Ordering inLa0.88Sr0.12MnO3. Physical Review Letters, 1999, 82, 4328-4331.	7.8	257
26	Orbital Liquid in Three-Dimensional Mott Insulator:LaTiO3. Physical Review Letters, 2000, 85, 3950-3953.	7.8	256
27	Current-Spin Coupling for Ferromagnetic Domain Walls in Fine Wires. Physical Review Letters, 2005, 95, 107204.	7.8	245
28	Linear-response theory of spin Seebeck effect in ferromagnetic insulators. Physical Review B, 2011, 83, .	3.2	239
29	Systematics of the Photoemission Spectral Function of Cuprates: Insulators and Hole- and Electron-Doped Superconductors. Physical Review Letters, 1998, 80, 4245-4248.	7.8	236
30	Long-range spin Seebeck effect and acoustic spinÂpumping. Nature Materials, 2011, 10, 737-741.	27.5	235
31	Thermoelectric Generation Based on Spin Seebeck Effects. Proceedings of the IEEE, 2016, 104, 1946-1973.	21.3	232
32	Generalization of Faraday's Law to Include Nonconservative Spin Forces. Physical Review Letters, 2007, 98, 246601.	7.8	229
33	Effective Hamiltonian in manganites:mStudy of the orbital and spin structures. Physical Review B, 1997, 55, 8280-8286.	3.2	227
34	Physics of Transition Metal Oxides. Springer Series in Solid-state Sciences, 2004, , .	0.3	224
35	Observation of orbital waves as elementary excitations in a solid. Nature, 2001, 410, 180-183.	27.8	204
36	Effects of Spin and Orbital Degeneracy on the Thermopower of Strongly Correlated Systems. Physical Review Letters, 2001, 87, 236603.	7.8	199

#	Article	IF	CITATIONS
37	Spiral State and Giant Magnetoresistance in Perovskite Mn Oxides. Physical Review Letters, 1995, 74, 3407-3410.	7.8	194
38	Electronic Structure of Mott Insulators Studied by Inelastic X-ray Scattering. Science, 2000, 288, 1811-1814.	12.6	193
39	Distinct spinon and holon dispersions in photoemission spectral functions from one-dimensional SrCuO2. Nature Physics, 2006, 2, 397-401.	16.7	193
40	Spin Imbalance and Magnetoresistance in Ferromagnet/Superconductor/Ferromagnet Double Tunnel Junctions. Physical Review Letters, 1999, 82, 3911-3914.	7.8	177
41	Giant enhancement of spin accumulation and long-distance spin precession in metallic lateralÂspin valves. Nature Materials, 2011, 10, 527-531.	27.5	174
42	Angular dependence of inverse spin–Hall effect induced by spin pumping investigated in a <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Ni</mml:mtext></mml:mrow><mml:mrow>film. Physical Review B, 2008, 78, .</mml:mrow></mml:msub></mml:mrow></mml:math>	v> <mml:m< td=""><td>n>872</td></mml:m<>	n>872
43	Effects of the surface boundary on the magnetization process in type-II superconductors. Physical Review B, 1993, 47, 8016-8024.	3.2	168
44	Theory of Giant Magnetoresistance in Metallic Superlattices. Journal of the Physical Society of Japan, 1991, 60, 376-379.	1.6	164
45	Electromotive force and huge magnetoresistance in magnetic tunnel junctions. Nature, 2009, 458, 489-492.	27.8	164
46	Observation of the spin Seebeck effect in epitaxial Fe3O4 thin films. Applied Physics Letters, 2013, 102, .	3.3	163
47	Enhanced spin accumulation and novel magnetotransport in nanoparticles. Nature Materials, 2004, 4, 57-61.	27.5	160
48	Rashba Spin-Orbit Anisotropy and the Electric Field Control of Magnetism. Scientific Reports, 2014, 4, 4105.	3.3	159
49	Gigantic enhancement of spin Seebeck effect by phonon drag. Applied Physics Letters, 2010, 97, .	3.3	157
50	Li(Zn,Mn)As as a new generation ferromagnet based on a lâ \in "llâ \in "V semiconductor. Nature Communications, 2011, 2, 422.	12.8	157
51	Role of next-nearest-neighbor hopping in thet-t'-Jmodel. Physical Review B, 1994, 49, 3596-3599.	3.2	154
52	Origin of the spin Seebeck effect in compensated ferrimagnets. Nature Communications, 2016, 7, 10452.	12.8	154
53	Spin current, spin accumulation and spin Hall effect. Science and Technology of Advanced Materials, 2008, 9, 014105.	6.1	147
54	Spin Current in Metals and Superconductors. Journal of the Physical Society of Japan, 2008, 77, 031009.	1.6	145

#	Article	IF	CITATIONS
55	Thermal spin pumping and magnon-phonon-mediated spin-Seebeck effect. Journal of Applied Physics, 2012, 111, .	2.5	140
56	Theory of Anomalous X-Ray Scattering in Orbital-Ordered Manganites. Physical Review Letters, 1998, 80, 3799-3802.	7.8	138
57	Superconductingi∈Qubit with a Ferromagnetic Josephson Junction. Physical Review Letters, 2005, 95, 097001.	7.8	138
58	Angle-resolved photoemission in highTccuprates from theoretical viewpoints. Superconductor Science and Technology, 2000, 13, R17-R32.	3. 5	135
59	Quantum materials for spin and charge conversion. Npj Quantum Materials, 2018, 3, .	5.2	132
60	Universality Classes for Domain Wall Motion in the Ferromagnetic Semiconductor (Ga,Mn)As. Science, 2007, 317, 1726-1729.	12.6	130
61	Spin Current Generation Using a Surface Acoustic Wave Generated via Spin-Rotation Coupling. Physical Review Letters, 2017, 119, 077202.	7.8	130
62	Charge-transfer gap and superexchange interaction in insulating cuprates. Physical Review Letters, 1991, 66, 1228-1231.	7.8	129
63	Separation of longitudinal spin Seebeck effect from anomalous Nernst effect: Determination of origin of transverse thermoelectric voltage in metal/insulator junctions. Physical Review B, 2013, 88, .	3.2	126
64	Unidirectional spin-wave heat conveyer. Nature Materials, 2013, 12, 549-553.	27.5	125
65	Tunneling electroresistance in ferroelectric tunnel junctions with a composite barrier. Applied Physics Letters, 2009, 95, .	3.3	124
66	Spin hydrodynamic generation. Nature Physics, 2016, 12, 52-56.	16.7	120
67	Superconductivity in the Kondo lattice. Physical Review B, 1984, 29, 2497-2502.	3.2	118
68	Spin Seebeck effect in antiferromagnets and compensated ferrimagnets. Physical Review B, 2013, 87, .	3.2	117
69	Conductance Quantization and Magnetoresistance in Magnetic Point Contacts. Physical Review Letters, 2000, 84, 1003-1006.	7.8	116
70	Mechanical generation of spin current by spin-rotation coupling. Physical Review B, 2013, 87, .	3.2	114
71	One-dimensional spinon spin currents. Nature Physics, 2017, 13, 30-34.	16.7	111
72	Effects of Mechanical Rotation on Spin Currents. Physical Review Letters, 2011, 106, 076601.	7.8	110

#	Article	IF	CITATIONS
73	Electronic State of aCoO2Layer with Hexagonal Structure: A Kagomé Lattice Structure in a Triangular Lattice. Physical Review Letters, 2003, 91, 257003.	7.8	109
74	Enhanced dc spin pumping into a fluctuating ferromagnet near <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>T</mml:mi><mml:mi>C</mml:mi>Physical Review B, 2014, 89, .</mml:msub></mml:math>	<b জ্ঞগ্নl:ms	ub ı α\$mml:ma
75	Extremely long quasiparticle spin lifetimes in superconducting aluminium using MgO tunnel spin injectors. Nature Materials, 2010, 9, 586-593.	27.5	102
76	Parallel and perpendicular transport in multilayered structures. Physical Review B, 1993, 48, 6192-6198.	3.2	100
77	Nonlinear optical response and spin-charge separation in one-dimensional Mott insulators. Physical Review B, 2000, 62, R4769-R4773.	3.2	100
78	Anisotropic two-dimensional electron gas at the LaAlO3/SrTiO3 (110) interface. Nature Communications, 2013, 4, 1838.	12.8	96
79	Superconducting phase transitions in rare-earth compounds. Physical Review B, 1978, 18, 4688-4705.	3.2	95
80	Separation of spin and charge excitations in one-dimensional SrCuO2. Physical Review B, 1997, 56, 15589-15595.	3.2	95
81	Spin current as a probe of quantum materials. Nature Materials, 2020, 19, 139-152.	27.5	94
82	Momentum Dependence of Resonant Inelastic X-Ray Scattering Spectrum in Insulating Cuprates. Physical Review Letters, 1999, 83, 3705-3708.	7.8	93
83	Gate-controlled spin splitting in quantum dots with ferromagnetic leads in the Kondo regime. Physical Review B, 2005, 72, .	3.2	93
84	Spin Current: Experimental and Theoretical Aspects. Journal of the Physical Society of Japan, 2013, 82, 102002.	1.6	93
85	Anomalous temperature dependence of current-induced torques in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mtext>CoFeB</mml:mtext><mml:mi>/</mml:mi><with .<="" 2014,="" 89,="" b,="" physical="" review="" ta-based="" td="" underlayers.=""><td>mral2mtex</td><td>t>MgO</td></with></mml:math>	mr al2 mtex	t>MgO
86	Upper Critical Field in Two-Dimensional Superconductors. Journal of the Physical Society of Japan, 1983, 52, 1352-1360.	1.6	91
87	Nonreciprocal surface acoustic wave propagation via magneto-rotation coupling. Science Advances, 2020, 6, eabb1724.	10.3	91
88	Enhanced tunnel magnetoresistance in granular nanobridges. Applied Physics Letters, 2001, 78, 515-517.	3.3	89
89	Electronic structure and effective Hamiltonian in perovskite Mn oxides. Physica C: Superconductivity and Its Applications, 1996, 263, 130-133.	1.2	88
90	Effect of spin-dependent screening on tunneling electroresistance and tunneling magnetoresistance in multiferroic tunnel junctions. Physical Review B, $2010,81,\ldots$	3.2	85

#	Article	IF	Citations
91	Localization and interaction effects in two-dimensional W-Re films. Physical Review B, 1983, 28, 6607-6609.	3.2	84
92	Hall Effect Induced by a Spin-Polarized Current in Superconductors. Physical Review Letters, 2002, 88, 116601.	7.8	83
93	Electronic structure and transport properties in magnetic superlattices. Physical Review B, 1993, 47, 5809-5818.	3.2	82
94	Quasiparticle-mediated spin Hall effect inÂaÂsuperconductor. Nature Materials, 2015, 14, 675-678.	27.5	82
95	Spin-dependent Coulomb blockade in ferromagnet/normal-metal/ferromagnet double tunnel junctions. Physical Review B, 1999, 59, 6017-6020.	3.2	80
96	Unusually Small Electrical Resistance of Three-Dimensional Nanoporous Gold in External Magnetic Fields. Physical Review Letters, 2008, 101, 166601.	7.8	79
97	Spin-Seebeck effects in films. Solid State Communications, 2010, 150, 524-528.	1.9	78
98	Enhanced Spin Hall Effect by Resonant Skew Scattering in the Orbital-Dependent Kondo Effect. Physical Review Letters, 2009, 102, 036401.	7.8	77
99	Surface-Assisted Spin Hall Effect in Au Films with Pt Impurities. Physical Review Letters, 2010, 105, 216401.	7.8	77
100	Electric detection of spin wave resonance using inverse spin-Hall effect. Applied Physics Letters, 2009, 94, .	3.3	76
101	Thermopower in Ce Kondo Systems. Journal of the Physical Society of Japan, 1986, 55, 3194-3198.	1.6	75
102	Transport Properties in Magnetic Superlattices. Journal of the Physical Society of Japan, 1992, 61, 1149-1152.	1.6	75
103	Physical Parameters in Copper Oxide Superconductors. Journal of the Physical Society of Japan, 1990, 59, 1760-1770.	1.6	73
104	Unconventional scaling and significant enhancement of the spin Seebeck effect in multilayers. Physical Review B, 2015, 92, .	3.2	73
105	Crystal Field in Kondo System. Journal of the Physical Society of Japan, 1985, 54, 1955-1963.	1.6	71
106	Dynamics of Holes in Antiferromagnetic State. Journal of the Physical Society of Japan, 1990, 59, 2110-2123.	1.6	71
107	Momentum Dependence of Charge Excitations in the Electron-Doped SuperconductorNd1.85Ce0.15CuO4: A Resonant Inelastic X-Ray Scattering Study. Physical Review Letters, 2005, 94, 207003.	7.8	71
108	Spatially homogeneous ferromagnetism of (Ga, Mn)As. Nature Materials, 2010, 9, 299-303.	27. 5	71

#	Article	IF	CITATIONS
109	Diluted ferromagnetic semiconductor Li(Zn,Mn)P with decoupled charge and spin doping. Physical Review B, 2013, 88, .	3.2	71
110	Effect of Magnetic Field on Sound Propagation near Magnetic Phase Transition Temperatures. Progress of Theoretical Physics, 1974, 51, 1-25.	2.0	70
111	Spin and Charge Dynamics of thetâ^'JModel. Physical Review Letters, 1995, 74, 980-983.	7.8	69
112	Large Third-Order Optical Nonlinearity of Cu-O Chains Investigated by Third-Harmonic Generation Spectroscopy. Physical Review Letters, 2001, 87, 177401.	7.8	69
113	Nonequilibrium Kondo effect in a quantum dot coupled to ferromagnetic leads. Physical Review B, 2005, 71, .	3.2	69
114	Orbital ordering in mel:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">LaMnO</mml:mi></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow><td>l:m³sûb><!--</td--><td>mml:mrow><</td></td></mml:msub></mml:mrow>	l:m³sûb> </td <td>mml:mrow><</td>	mml:mrow><
115	Bogoliubov quasiparticle excitations in the two-dimensionalt-Jmodel. Physical Review Letters, 1994, 73, 324-327.	7.8	67
116	Orbital degree of freedom and phase separation in ferromagnetic manganites at finite temperatures. Physical Review B, 2000, 61, 451-458.	3.2	66
117	Computer simulations of dynamics of flux lines in type-II superconductors. Physical Review B, 1991, 44, 6916-6920.	3.2	65
118	Kondo quantum dot coupled to ferromagnetic leads: Numerical renormalization group study. Physical Review B, 2007, 76, .	3.2	65
119	Evolution of the in-gap state in high-Tccuprates. Physical Review B, 1992, 46, 14022-14033.	3.2	64
120	Effect of Stripes on Electronic States in UnderdopedLa2â^'xSrxCuO4. Physical Review Letters, 1999, 82, 4910-4913.	7.8	64
121	Tunnel-MR and spin electronics in metal–nonmetal granular systems. Journal of Magnetism and Magnetic Materials, 1999, 198-199, 179-184.	2.3	64
122	Spin-dependent inertial force and spin current in accelerating systems. Physical Review B, 2011, 84, .	3.2	64
123	Conductance Fluctuation in Small Metallic Wires. Journal of the Physical Society of Japan, 1987, 56, 25-28.	1.6	61
124	Andreev reflection in ferromagnet/superconductor/ferromagnet double junction systems. Physical Review B, 2003, 67, .	3.2	60
125	Orbital excitations inLaMnO3studied by resonant inelastic x-ray scattering. Physical Review B, 2003, 67,	3.2	60
126	Magnetic memory and current amplification devices using moving domain walls. Applied Physics Letters, 2006, 89, 122507.	3.3	60

#	Article	IF	Citations
127	Spin transport and relaxation in superconductors. Physical Review B, 2002, 65, .	3.2	59
128	Pair breaking parameter of two-dimensional dirty superconductors. Solid State Communications, 1983, 45, 75-78.	1.9	58
129	Giant dielectric and magnetoelectric responses in insulating nanogranular films at room temperature. Nature Communications, 2014, 5, 4417.	12.8	58
130	Electronic and magnetic structures of cuprates with spin-orbit interaction. Physical Review B, 1993, 47, 3391-3400.	3.2	57
131	Polarization dependence of anomalous x-ray scattering in orbital-ordered manganites. Physical Review B, 1998, 58, 13442-13451.	3.2	57
132	Low Energy Electronic States and Triplet Pairing in Layered Cobaltate. Physical Review Letters, 2004, 93, 176401.	7.8	57
133	Possible <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msup><mml:mi>d</mml:mi><mml:mn>0</mml:mn></mml:msup>in MgO doped with nitrogen. Physical Review B, 2009, 79, .</mml:mrow></mml:math>	rows2/mm	nl:n s øth>ferro
134	Crossed Andreev reflection in structures consisting of a superconductor with ferromagnetic leads. Physical Review B, 2003, 68, .	3.2	55
135	Spin current through a normal-metal/insulating-ferromagnet junction. Journal of Physics: Conference Series, 2010, 200, 062030.	0.4	55
136	Electronic States of Doped Spin Ladders (Sr,Ca)14Cu24O41. Journal of the Physical Society of Japan, 1997, 66, 937-940.	1.6	54
137	Numerical study on the spin Seebeck effect. Physical Review B, 2011, 83, .	3.2	54
138	Bulk Superconductivity in Weakly Localized Regime. Journal of the Physical Society of Japan, 1984, 53, 3560-3567.	1.6	53
139	Transition temperature in copper-oxide superconductors correlated with energy level of apical oxygen. Physica C: Superconductivity and Its Applications, 1990, 166, 385-387.	1.2	53
140	Interplay of Spin and Orbital Orderings in Perovskite Manganites. Journal of the Physical Society of Japan, 1997, 66, 957-960.	1.6	53
141	Stripe stability in the extendedtâ^'Jmodel on planes and four-leg ladders. Physical Review B, 1999, 59, R11649-R11652.	3.2	53
142	Mott Gap Excitations and Resonant Inelastic X-Ray Scattering in Doped Cuprates. Physical Review Letters, 2003, 91, 117001.	7.8	53
143	Origin of the Phonon Hall Effect in Rare-Earth Garnets. Physical Review Letters, 2014, 113, 265901.	7.8	53
144	Effect of Crystal Field on Kondo Resistivity in Ce Compounds. Journal of the Physical Society of Japan, 1986, 55, 1341-1349.	1.6	52

#	Article	IF	Citations
145	Electronic states in the antiferromagnetic phase of electron-doped high-Tccuprates. Physical Review B, 2001, 64, .	3.2	52
146	"Flux―State in the Double-Exchange Model. Physical Review Letters, 1998, 81, 5604-5607.	7.8	51
147	Theory of Dzyaloshinski-Moriya antiferromagnetism in distortedCuO2andNiO2planes. Physical Review B, 1994, 50, 3767-3778.	3.2	50
148	Magnetic Correlations in the Hubbard Model on Triangular and Kagom \tilde{A} © Lattices. Physical Review Letters, 2005, 95, 037001.	7.8	50
149	Magnetization dynamics and its scattering mechanism in thin CoFeB films with interfacial anisotropy. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3815-3820.	7.1	50
150	Anomalous Spin and Charge Dynamics of thet-JModel at Low Doping. Physical Review Letters, 1995, 74, 5124-5127.	7.8	49
151	Effects of Randomness on Tunnel Conductance and Magnetoresistance in Ferromagnetic Tunnel Junctions. Journal of the Physical Society of Japan, 1999, 68, 1632-1639.	1.6	49
152	Coulomb staircase in STM current through granular films. Physical Review B, 2000, 61, 46-49.	3.2	49
153	Numerical approach to the low-doping regime of the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>t</mml:mi><mml:mtext>â^'</mml:mtext><mml:mi>J</mml:mi></mml:mrow><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><mml:mi><th>-o3.2<th>ıl:#9th>mod</th></th></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:mi></mml:math>	-o 3.2 <th>ıl:#9th>mod</th>	ıl:#9th>mod
154	Continuous Generation of Spinmotive Force in a Patterned Ferromagnetic Film. Physical Review Letters, 2011, 107, 236602.	7.8	49
155	Generation of spin currents by surface plasmon resonance. Nature Communications, 2015, 6, 5910.	12.8	49
156	Charge and spin in low-dimensional cuprates. Reports on Progress in Physics, 2001, 64, 383-428.	20.1	48
157	Spin dynamical properties and orbital states of the layered perovskiteLa2â^2xSr1+2xMn2O7â€,(0.3<~x<0.5). Physical Review B, 2002, 65, .	3.2	48
158	Giant magnetoresistance in magnetic granular alloys. Physical Review B, 1994, 49, 12831-12834.	3.2	47
159	Theory of spin hydrodynamic generation. Physical Review B, 2017, 96, .	3.2	47
160	Spin Current Noise of the Spin Seebeck Effect and Spin Pumping. Physical Review Letters, 2018, 120, 037201.	7.8	47
161	Theory of Dirty Superconductors in Weakly Localized Regime. Journal of the Physical Society of Japan, 1984, 53, 2681-2687.	1.6	46
162	Theory of giant magnetoresistance for parallel and perpendicular currents in magnetic multilayers. Physical Review B, 1995, 51, 342-352.	3.2	46

#	Article	IF	Citations
163	One-particle excitation spectra, optical conductivity and O ls x-ray absorption spectra in high-Tc cuprates: a cluster model approach. Physica C: Superconductivity and Its Applications, 1992, 191, 193-198.	1.2	45
164	Spin-motive force due to a gyrating magnetic vortex. Nature Communications, 2012, 3, 845.	12.8	45
165	Observation of Barnett fields in solids by nuclear magnetic resonance. Applied Physics Express, 2014, 7, 063004.	2.4	45
166	Insulator-metal transition in one dimension induced by long-range electronic interactions. Physical Review B, 1997, 56, R1645-R1649.	3.2	44
167	Antiferromagnetic ordering ofS=12triangles inLa4Cu3MoO12. Physical Review B, 2000, 62, R3588-R3591.	3.2	44
168	Theory of the spin Peltier effect. Physical Review B, 2017, 96, .	3.2	44
169	Magnetic ordering, orbital ordering, and resonant x-ray scattering in perovskite titanates. Physical Review B, 2002, 65, .	3.2	43
170	Time-Domain Observation of the Spinmotive Force in Permalloy Nanowires. Physical Review Letters, 2012, 108, 147202.	7.8	43
171	Superconducting Transition Temperature of Dirty Thin Films in Weakly Localized Regime. Journal of the Physical Society of Japan, 1985, 54, 2257-2268.	1.6	42
172	Theory of orbital excitation and resonant inelastic x-ray scattering in manganites. Physical Review B, 2000, 62, 2338-2345.	3.2	41
173	Spin accumulation in ferromagnetic single-electron transistors in the cotunneling regime. Physical Review B, 2002, 66, .	3.2	41
174	Resonant x-ray scattering in manganites: study of the orbital degree of freedom. Reports on Progress in Physics, 2002, 65, 561-598.	20.1	41
175	Implications of the Nuclear Quadrupole Frequency in High-TcCuprates. Journal of the Physical Society of Japan, 1992, 61, 2198-2201.	1.6	40
176	Superconductivity in Spin Ladders. Science, 1996, 273, 1515-0.	12.6	40
177	Mott Gap Excitations in Twin-FreeYBa2Cu3O7â^Î (Tc=93  K) Studied by Resonant Inelastic X-Ray Scatteri Physical Review Letters, 2005, 94, 187002.	ng Æ8	40
178	Supercurrent Pumping in Josephson Junctions with a Half-Metallic Ferromagnet. Physical Review Letters, 2007, 99, 057003.	7.8	39
179	Relaxation Dynamics of Photocarriers in One-Dimensional Mott Insulators Coupled to Phonons. Journal of the Physical Society of Japan, 2012, 81, 013701.	1.6	39
180	Superexchange interaction in cuprates. Physical Review B, 1998, 58, R14713-R14716.	3.2	38

#	Article	IF	CITATIONS
181	Doping dependence of chemical potential and entropy in hole- and electron-doped high-Tccuprates. Physical Review B, 2003, 67, .	3.2	38
182	Theory of Magnetoresistance in Magnetic Superlattices. Progress of Theoretical Physics Supplement, 1991, 106, 187-193.	0.1	38
183	Superconducting π qubit with three Josephson junctions. Applied Physics Letters, 2006, 88, 132501.	3.3	37
184	Quantum Dynamics of a Driven Correlated System Coupled to Phonons. Physical Review Letters, 2011, 107, 246404.	7.8	37
185	Spin Hall effect by surface roughness. Physical Review B, 2015, 91, .	3.2	37
186	Nonreciprocal Spin Current Generation in Surface-Oxidized Copper Films. Physical Review Letters, 2019, 122, 217701.	7.8	37
187	Resonant inelastic x-ray scattering in one-dimensional copper oxides. Physical Review B, 2000, 61, 7180-7182.	3.2	36
188	Phenomenological analysis for spin-Seebeck effect in metallic magnets. Journal of Applied Physics, 2009, 105, 07C908.	2.5	36
189	Heavy Quasiparticles in the Anderson Lattice Model. Physical Review Letters, 1996, 76, 279-282.	7.8	35
190	Pressure Effects in Manganites with Layered Perovskite Structure. Journal of the Physical Society of Japan, 1997, 66, 2965-2968.	1.6	35
191	Dirac surface state–modulated spin dynamics in a ferrimagnetic insulator at room temperature. Science Advances, 2018, 4, eaas8660.	10.3	35
192	Localization Effects on Bulk Superconductivity in Weakly Localized Regime. Journal of the Physical Society of Japan, 1984, 53, 1919-1922.	1.6	34
193	Electrical resistivity, thermal conductivity, and thermopower in theU=â^ž Hubbard model. Physical Review B, 1990, 41, 6977-6988.	3.2	34
194	Effects of Carrier-Doping on Optical Conductivity in HighTcCopper Oxides. Journal of the Physical Society of Japan, 1991, 60, 53-56.	1.6	34
195	Finite Temperature Effects in a One-Dimensional Mott-Hubbard Insulator: Angle-Resolved Photoemission Study of NaO.96V2O5. Physical Review Letters, 1999, 82, 803-806.	7.8	34
196	Acoustic ferromagnetic resonance and spin pumping induced by surface acoustic waves. Journal Physics D: Applied Physics, 2020, 53, 264002.	2.8	34
197	Magnetoresistance in metallic superlattices. Journal of Magnetism and Magnetic Materials, 1992, 104-107, 1883-1884.	2.3	33
198	Exact-diagonalization study of the Hubbard model with nearest-neighbor repulsion. Physical Review B, 1994, 50, 13594-13602.	3.2	33

#	Article	IF	Citations
199	Exact diagonalization study of optical conductivity in the two-dimensional Hubbard model. Physical Review B, 2005, 72, .	3.2	33
200	Bipolaron in thetâ^'JModel Coupled to Longitudinal and Transverse Quantum Lattice Vibrations. Physical Review Letters, 2009, 103, 186401.	7.8	33
201	The spin Hall effect as a probe of nonlinear spin fluctuations. Nature Communications, 2012, 3, 1058.	12.8	33
202	Optically Transparent Ferromagnetic Nanogranular Films with Tunable Transmittance. Scientific Reports, 2016, 6, 34227.	3.3	33
203	Spin-Mechatronics. Journal of the Physical Society of Japan, 2017, 86, 011011.	1.6	33
204	Spin Seebeck mechanical force. Nature Communications, 2019, 10, 2616.	12.8	33
205	Range dependence of interlayer exchange coupling. Physical Review B, 1998, 58, 5588-5593.	3.2	32
206	Interchain interactions and magnetic properties of Li2CuO2. Physical Review B, 1999, 60, 6230-6233.	3.2	32
207	Origin of the Spatial Variation of the Pairing Gap in Bi-Based High Temperature Cuprate Superconductors. Physical Review Letters, 2008, 101, 247003.	7.8	32
208	Surface acoustic attenuation due to surface spin wave in ferro- and antiferromagnets. AIP Conference Proceedings, 1976 , , .	0.4	31
209	Effects of Interface Roughness on Conductance in Superlattices. Journal of the Physical Society of Japan, 1992, 61, 2652-2655.	1.6	31
210	Effects of spin-flip and magnon-inelastic scattering on tunnel magnetoresistance. Journal of Magnetism and Magnetic Materials, 1999, 198-199, 167-169.	2.3	31
211	Spin Liquid State around a Doped Hole in Insulating Cuprates. Journal of the Physical Society of Japan, 2000, 69, 9-12. Thermoelectric response in the incoherent transport region near Mott transition: The case study of	1.6	31
212	La <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow /><mml:mrow><mml:mn>1</mml:mn><mml:mo><mml:mi>x</mml:mi></mml:mo></mml:mrow>xmlns:mml="http://www.w3.org/1998/Math/MathML"</mml:mrow </mml:msub></mml:mrow></mml:math>	> < ≱n2 ml:mı	ro v o⊳
213	display="inline"> <mml:mrow><mml:msub><mml:mrow ><mml:mrow><mml:mi>x</mml:mi></mml:mrow></mml:mrow Barnett effect in paramagnetic states. Physical Review B, 2015, 92, .</mml:msub></mml:mrow>	3.2	31
214	Theory of Aharonov-Bohm Effect in Small Normal Metals. Journal of the Physical Society of Japan, 1986, 55, 2523-2526.	1.6	30
215	Comment on â€~â€~Moriya's anisotropic superexchange interaction, frustration, and Dzyaloshinsky's wea ferromagnetism''. Physical Review Letters, 1993, 71, 467-467.	ak 7.8	30
216	Orbital structure and magnetic ordering in layered manganites: Universal correlation and its mechanism. Physical Review B, 2001, 63, .	3.2	30

#	Article	IF	CITATIONS
217	Electronic states and superconductivity in multilayer high-Tccuprates. Physical Review B, 2002, 66, .	3.2	30
218	Acoustic spin pumping: Direct generation of spin currents from sound waves in Pt/Y3Fe5O12 hybrid structures. Journal of Applied Physics, 2012, 111, .	2.5	30
219	Ultrasonic study of terbium in a magnetic field. Physical Review B, 1976, 13, 1284-1298.	3.2	29
220	Approximate Decoupling of Spin and Charge Excitations in the Two-Dimensionalt-JModel. Journal of the Physical Society of Japan, 1996, 65, 1902-1905.	1.6	29
221	Interrelation between orbital polarization and magnetic structure in bilayer manganites. Physical Review B, 1999, 59, R14153-R14156.	3.2	29
222	Pressure-induced insulator-metal transition in a bilayer manganite: Pressure control of orbital stability. Physical Review B, 2000, 62, 17-20.	3.2	29
223	Spectral properties of a hole coupled to optical phonons in the generalizedtâ^'Jmodel. Physical Review B, 2008, 77, .	3.2	29
224	Quantum Renormalization of the Spin Hall Effect. Physical Review Letters, 2010, 105, 086401.	7.8	29
225	Magnetic Interaction in Insulating Cuprates. Journal of Low Temperature Physics, 1999, 117, 389-393.	1.4	28
226	Resonant Two-Magnon Raman Scattering and Photoexcited States in Two-Dimensional Mott Insulators. Physical Review Letters, 2002, 89, 257405.	7.8	28
227	Effect of Antiferromagnetic Planes on the Superconducting Properties of Multilayered High-TcCuprates. Physical Review Letters, 2005, 94, 137003.	7.8	28
228	Electrical measurements of the polarization in a moving magnetic vortex. Applied Physics Letters, 2009, 95, 123110.	3.3	28
229	magnetic semiconductor <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi mathvariant="normal">Ba<mml:mrow><mml:mn>1</mml:mn><mml:mo>â^²</mml:mo><mml:mi>x<!--</td--><td>mml:mi><</td><td>/mml:mrow></td></mml:mi></mml:mrow></mml:mi </mml:msub></mml:math 	mml:mi><	/mml:mrow>

#	Article	IF	CITATIONS
235	Spin-dependent transport in magnetic nanostructures. Journal of Magnetism and Magnetic Materials, 1996, 156, 315-316.	2.3	26
236	Numerical Study of Magnetoresistance in Ferromagnetic Tunnel Junctions. Japanese Journal of Applied Physics, 1998, 37, 5554-5559.	1.5	26
237	Spin injection and magnetoresistance in ferromagnet– superconductor–ferromagnet tunnel junctions. Journal of Applied Physics, 2000, 87, 5227-5229.	2.5	26
238	Direct dynamical coupling of spin modes and singlet Josephson supercurrent in ferromagnetic Josephson junctions. Physical Review B, 2009, 80, .	3.2	26
239	Spin motive force in magnetic nanostructures. Journal of Applied Physics, 2009, 105, 07C706.	2.5	26
240	Electron correlation and excitation spectra in high-Tc Cu oxides. Physica C: Superconductivity and Its Applications, 1988, 152, 133-139.	1.2	25
241	Spin transfer torque in magnetic tunnel junctions with synthetic ferrimagnetic layers. Journal of Applied Physics, 2009, 105, 07D120.	2.5	25
242	Polarization-analyzed resonant inelastic x-ray scattering of the orbital excitations in KCuF <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math> . Physical Review B, 2011, 83, .	3.2	25
243	Renormalization of spin-rotation coupling. Physical Review B, 2013, 87, . Fermi surfaces and rmm : Fermi surfa	3.2	25
244	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi>p</mml:mi><mml:mtext>â^'<mml:mrow><mml:msub><mml:mi>Ba</mml:mi><mml:mo>.</mml:mo></mml:msub></mml:mrow></mml:mtext></mml:mrow>		
245	Physical Review B, 2015, 92, . Vortex structure in ferromagnetic superconductors. Journal of Magnetism and Magnetic Materials, 1979, 13, 324-327.	2.3	24
246	Magnetic Properties in the Mixed State of Ferromagnetic Superconductors. Journal of the Physical Society of Japan, 1983, 52, 1341-1351.	1.6	24
247	Far-Infrared Absorption and Tunneling Conductance of Anisotropic Singlet Superconductors at Finite Temperatures. Japanese Journal of Applied Physics, 1987, 26, L992-L994.	1.5	24
248	Electronic states and magnetoresistance in multilayers. Journal of Magnetism and Magnetic Materials, 1993, 121, 344-349.	2.3	24
249	Conductance quantization and Andreev reflection in narrow ferromagnet/superconductor point contacts. Physical Review B, 2001, 65, .	3.2	24
250	Experimental quest for orbital waves. Nature, 2002, 418, 40-40.	27.8	24
251	Electron-phonon coupling and spin-charge separation in one-dimensional Mott insulators. Physical Review B, 2006, 74, .	3.2	24
252	Spin-Hall conductivity and electric polarization in metallic thin films. Physical Review B, 2013, 87, .	3.2	24

#	Article	IF	CITATIONS
253	Spin transport in half-metallic ferromagnets. Physical Review B, 2016, 94, .	3.2	24
254	Perspectives on spintronics with surface acoustic waves. Applied Physics Letters, 2022, 120, .	3.3	24
255	Magnetic-field-induced superconductivity. Physical Review B, 1982, 25, 1990-1992.	3.2	23
256	Magnetic excitations from the edge-sharingCuO2chains inCa2Y2Cu5O10. Physical Review B, 2001, 63, .	3.2	23
257	Spin-relaxation and magnetoresistance in FM/SC/FM tunnel junctions. Journal of Magnetism and Magnetic Materials, 2002, 240, 100-102.	2.3	23
258	Transport in magnetic nanostructures in the presence of Coulomb interaction (invited). Journal of Applied Physics, 2003, 93, 8265-8270.	2.5	23
259	Temperature dependence of spinon and holon excitations in one-dimensional Mott insulators. Physical Review B, 2005, 72, .	3.2	23
260	Successive phase transitions in superconducting granular films. Solid State Communications, 1981, 37, 45-47.	1.9	22
261	Upper critical field in the superconducting Kondo lattice. Physical Review B, 1985, 31, 228-234.	3.2	22
262	Simulation study of the mixed state in inhomogeneous superconductors. Physica C: Superconductivity and Its Applications, 1994, 227, 387-394.	1.2	22
263	Phase transition in perovskite manganites with orbital degree of freedom. Physical Review B, 2000, 61, 14647-14655.	3.2	22
264	Long-range ferromagnetic correlations between Anderson impurities in a semiconductor host: Quantum Monte Carlo simulations. Physical Review B, 2007, 76, .	3.2	22
265	Spin Waves in a Spin-Pair System and in a System of Magnetic Ions with Large Anisotropy Energy. Journal of the Physical Society of Japan, 1970, 29, 656-663.	1.6	21
266	Detection of stored momentum in magnetic bubbles by a bias jump effect. Journal of Applied Physics, 1976, 47, 3321-3328.	2.5	21
267	Crystal-field effects in magnetic superconductingEr1â^'xTmxRh4B4andEr1â^'xHoxRh4B4. Physical Review B, 1980, 22, 164-167.	3.2	21
268	Far-Infrared Absorption to Test Anisotropy of Energy Gap in HighTcSuperconducting Oxides. Japanese Journal of Applied Physics, 1987, 26, L468-L470.	1.5	21
269	Electronic and magnetic states in dopedLaCoO3. Physical Review B, 1999, 59, 4549-4552.	3.2	21
270	Dynamical density matrix renormalization group study of photoexcited states in one-dimensional Mott insulators. Physical Review B, 2004, 70, .	3.2	21

#	Article	IF	CITATIONS
271	Angular momentum compensation manipulation to room temperature of the ferrimagnet Ho3â°' <i>x</i> Dy <i>x</i> Fe5O12 detected by the Barnett effect. Applied Physics Letters, 2019, 114, .	3.3	21
272	Anomalous temperature dependence of the upper critical fields in magnetic-superconducting Y1â°'xGdxRh4B4. Solid State Communications, 1979, 32, 929-931.	1.9	20
273	Crystal field and Kondo effect in Ce compounds. Journal of Magnetism and Magnetic Materials, 1985, 52, 149-151.	2.3	20
274	Effects of Magnetic and Non-Magnetic Impurities on Anisotropic Singlet Superconductors. Japanese Journal of Applied Physics, 1987, 26, L771-L773.	1.5	20
275	Momentum-dependent charge excitations of a two-leg ladder: Resonant inelastic x-ray scattering of(La,Sr,Ca)14Cu24O41. Physical Review B, 2007, 76, . Doping and temperature dependence of Raman scattering from <mml:math< td=""><td>3.2</td><td>20</td></mml:math<>	3.2	20
276	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mrow><mml:mtext>NdFeAsO</mml:mtext></mml:mrow><mr xmlns:mml="http://www.w3.org/1998/Math/MathML"</mr </mml:msub></mml:mrow>	nl:mrow><	:mml:mn>1 </td

#	Article	IF	CITATIONS
289	Observation of gyromagnetic reversal. Applied Physics Letters, 2018, 113, .	3.3	19
290	Kondo effect on crystal field splitting. Journal of Applied Physics, 1985, 57, 3169-3171.	2.5	18
291	Resonant inelastic x-ray scattering study of the hole-doped manganitesLa1â^'xSrxMnO3(x=0.2, 0.4). Physical Review B, 2004, 70, .	3.2	18
292	Spinmotive force with static and uniform magnetization induced by a time-varying electric field. Physical Review B, 2013, 88, .	3.2	18
293	Highly nonlinear frequency-dependent spin-wave resonance excited via spin-vorticity coupling. Physical Review B, 2020, 102, .	3.2	18
294	Giant spin hydrodynamic generation in laminar flow. Nature Communications, 2020, 11, 3009.	12.8	18
295	Anderson Localization and Proximity Effect. Journal of the Physical Society of Japan, 1986, 55, 1814-1817.	1.6	18
296	Spin Hall Effect in Superconductors. Japanese Journal of Applied Physics, 2012, 51, 010110.	1.5	18
297	Short Range Order of Spins in Cu(NO3)22.5H2O under Magnetic Field. Journal of the Physical Society of Japan, 1970, 29, 663-666.	1.6	17
298	Cluster analyses of electronic states in electron-doped copper oxide superconductors. Physica C: Superconductivity and Its Applications, 1989, 158, 525-530.	1.2	17
299	Numerical study of the effect of Coulomb repulsion on resonant tunneling. Physical Review B, 1994, 50, 2667-2670.	3.2	17
300	Theory of orbital ordering, fluctuation, and resonant x-ray scattering in manganites. Physical Review B, 2000, 62, R9252-R9255.	3.2	17
301	Charge Imbalance Effects on Interlayer Hopping and Fermi Surfaces in Multilayered High-TcCuprates. Journal of the Physical Society of Japan, 2006, 75, 034708.	1.6	17
302	Ferromagnetic Resonance Induced Josephson Current in a Superconductor/Ferromagnet/Superconductor Junction. Journal of the Physical Society of Japan, 2008, 77, 053707.	1.6	17
303	Rotational Doppler Effect and Barnett Field in Spinning NMR. Journal of the Physical Society of Japan, 2015, 84, 043601.	1.6	17
304	Excitation spectra and bose condensation in superconductors with strong correlation. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1987, 148, 391-395.	0.9	16
305	Gutzwiller wave function in the three-band Hubbard model: A variational Monte Carlo study. Physical Review B, 1994, 49, 6880-6889.	3.2	16
306	c-axis charge dynamics in the bilayert-Jmodel: A numerical study. Physical Review B, 1995, 51, 3265-3268.	3.2	16

#	Article	IF	Citations
307	Effects of Orbitals on the Magnetization Process in Manganites. Journal of the Physical Society of Japan, 1997, 66, 2985-2988.	1.6	16
308	Raman scattering by orbital waves in perovskite LaMnO3. Physica B: Condensed Matter, 1997, 237-238, 51-53.	2.7	16
309	Incommensurate State and Spin-Induced Peierls Instability. Physical Review Letters, 1999, 82, 2119-2122.	7.8	16
310	Reconsideration of the lattice effect on the charge-ordering transition of doped manganites. Physical Review B, 2000, 62, 80-83.	3.2	16
311	Role of Magnetic Scattering in 0–π Transitions in a Superconductor/Ferromagnetic Metal/Superconductor Junction. Journal of the Physical Society of Japan, 2007, 76, 054705.	1.6	16
312	Charge pumping and the colored thermal voltage noise in spin valves. Physical Review B, 2009, 79, .	3.2	16
313	Record thermopower found in an IrMn-based spintronic stack. Nature Communications, 2020, 11, 2023.	12.8	16
314	Mixed States in Ferromagnetic Superconductors. Journal of the Physical Society of Japan, 1983, 52, 1750-1758.	1.6	15
315	Computer simulations of a vortex line motion in type-II superconductors. Physica C: Superconductivity and Its Applications, 1992, 192, 166-172.	1.2	15
316	Nonlinear optical response in two-dimensional Mott insulators. Physical Review B, 2002, 66, .	3.2	15
317	Excitonic effect on the optical response in the one-dimensional two-band Hubbard model. Physical Review B, 2005, 71, .	3.2	15
318	Theory and experiment of orbital excitations in correlated oxides. New Journal of Physics, 2005, 7, 119-119.	2.9	15
319	Hall effect inCoO2layers with a hexagonal structure. Physical Review B, 2007, 75, .	3.2	15
320	Combined Approach of Density Functional Theory and Quantum Monte Carlo Method to Electron Correlation in Dilute Magnetic Semiconductors. Journal of the Physical Society of Japan, 2009, 78, 083703.	1.6	15
321	Linear-response theory of the longitudinal spin Seebeck effect. Journal of the Korean Physical Society, 2013, 62, 1753-1758.	0.7	15
322	Thermal engineering of non-local resistance in lateral spin valves. Applied Physics Letters, 2014, 104, .	3.3	15
323	Mechanical generation of spin current. Frontiers in Physics, 2015, 3, .	2.1	15
324	Long decay length of magnon-polarons in BiFeO3/La0.67Sr0.33MnO3 heterostructures. Nature Communications, 2021, 12, 7258.	12.8	15

#	Article	IF	CITATIONS
325	Criterion for the Appearance of Critical Attenuation of Shear Waves in Magnetic Materials. Physical Review Letters, 1975, 34, 1579-1582.	7.8	14
326	Impurity effects on the transport properties of two-dimensional magnetic vortex systems. Physica C: Superconductivity and Its Applications, 1993, 215, 51-58.	1.2	14
327	Differences in optical conductivity between one- and two-dimensional doped nickelates. Physical Review B, 1999, 59, 9729-9732.	3.2	14
328	Optical conductivity in the <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>t</mml:mi><mml:mtext>â^3</mml:mtext><mml:mi>J</mml:mi><td>row.2<td>nl:math>Hols</td></td></mml:mrow></mml:math>	ro w.2 <td>nl:math>Hols</td>	nl:math>Hols
329	Non-reciprocal Pumping of Surface Acoustic Waves by Spin Wave Resonance. Journal of the Physical Society of Japan, 2020, 89, 113702.	1.6	14
330	Spin–Orbit-Induced Ising Ferromagnetism at a van der Waals Interface. Nano Letters, 2021, 21, 1807-1814.	9.1	14
331	Periods of Long Period Superlattices in Alloys. Journal of the Physical Society of Japan, 1970, 28, 375-379.	1.6	13
332	Superconducting Transition Temperature of Dirty Thin Wires in Weakly Localized Regime. Journal of the Physical Society of Japan, 1986, 55, 4408-4416.	1.6	13
333	Excitation spectra of the negative-UHubbard model: A small-cluster study. Physical Review B, 1995, 52, 15617-15620.	3.2	13
334	Anomalous low-energy excitations in strongly correlated electron systems. Physica C: Superconductivity and Its Applications, 1996, 263, 61-65.	1.2	13
335	Spin injection and transport in magnetic nanostructures. Physica C: Superconductivity and Its Applications, 2006, 437-438, 309-313.	1.2	13
336	Exact diagonalization calculations of hole binding around Ni impurities in Ni-substituted cuprate superconductors. Physical Review B, 2009, 80, .	3.2	13
337	Nonmonotonic temperature dependence of thermopower in strongly correlated electron systems. Physical Review B, 2011, 84, .	3.2	13
338	Spinmotive force due to motion of magnetic bubble arrays driven by magnetic field gradient. Scientific Reports, 2014, 4, 6901.	3.3	13
339	Effect of magnetic frustration on the single-hole spectral function in thetâ^'t′â^'t″â^'Jmodel. Physical Review B, 1999, 59, 1840-1844.	3.2	12
340	Field-induced orbital order-disorder transition in anA-type antiferromagnetic manganite: High-field study ofNd0.45Sr0.55MnO3. Physical Review B, 2001, 65, .	3.2	12
341	Temperature dependence of spin correlation and charge dynamics in the stripe phase of high-Tcsuperconductors. Physical Review B, 2001, 64, .	3.2	12
342	Theory of Raman scattering from orbital excitations in manganese oxides. Physical Review B, 2002, 66, .	3.2	12

#	Article	IF	Citations
343	Controllableï€junction with magnetic nanostructures. Physical Review B, 2006, 73, .	3.2	12
344	Enhancement of phonon effects in photoexcited states of one-dimensional Mott insulators. Physical Review B, 2008, 77, .	3.2	12
345	Detection of Spin-Wave Spin Current in a Magnetic Insulator. IEEE Transactions on Magnetics, 2011, 47, 1591-1594.	2.1	12
346	Microwave-induced supercurrent in a ferromagnetic Josephson junction. Superconductor Science and Technology, 2011, 24, 024008.	3.5	12
347	Theory of the spin Hall effect, and its inverse, in a ferromagnetic metal near the Curie temperature. Physical Review B, 2012, 86, .	3.2	12
348	Spin-Wave Spin Current in Magnetic Insulators. Solid State Physics, 2013, , 1-27.	0.5	12
349	Strong Suppression of the Spin Hall Effect in the Spin Glass State. Physical Review Letters, 2015, 115, 196602.	7.8	12
350	Line splitting by mechanical rotation in nuclear magnetic resonance. Japanese Journal of Applied Physics, 2015, 54, 050302.	1.5	12
351	Spin injection and spin transport in hybrid nanostructures. , 2006, , 343-370.		12
352	Spin Wave Theory of Antiferromagnetic Resonance in the System of Spins Canted by External Magnetic Fields. Journal of the Physical Society of Japan, 1973, 34, 1477-1485.	1.6	11
353	Dynamics of Two Holes in thet-JModel. Progress of Theoretical Physics Supplement, 1992, 108, 313-326.	0.1	11
354	Ground-state properties and dynamics of the bilayert-Jmodel. Physical Review B, 1995, 52, 7708-7714.	3.2	11
355	Theory of spin-dependent tunneling and transport in magnetic nanostructures (invited). Journal of Applied Physics, 1996, 79, 4730.	2.5	11
356	Enhancement in spin-dependent tunneling with Coulomb blockade. Journal of Magnetism and Magnetic Materials, 1999, 198-199, 143-145.	2.3	11
357	Spin injection in ferromagnet/superconductor/ferromagnet tunnel junctions. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1515-1518.	1.2	11
358	Anomalous temperature dependence of the single-particle spectrum in the organic conductor TTF-TCNQ. Physical Review B, 2006, 74, .	3.2	11
359	Crystal structure effect on the ferromagnetic correlations in ZnO with magnetic impurities. Journal of Applied Physics, 2008, 104, 103906.	2.5	11
360	A flood of spin current. Nature Materials, 2009, 8, 777-778.	27.5	11

#	Article	IF	CITATIONS
361	Ferromagnetic resonance with a magnetic Josephson junction. Superconductor Science and Technology, 2011, 24, 024020.	3.5	11
362	Magnetization plateaus by reconstructed quasispinons in a frustrated two-leg spin ladder under a magnetic field. Physical Review B, 2015, 92, .	3.2	11
363	Corrections to "Thermoelectric Generation Based on Spin Seebeck Effects―[DOI: 10.1109/JPROC.2016.2535167]. Proceedings of the IEEE, 2016, 104, 1499-1499.	21.3	11
364	Interaction between surface acoustic waves and spin waves in a ferromagnetic thin film. Journal of Magnetism and Magnetic Materials, 2022, 545, 168672.	2.3	11
365	Anomalous superconducting properties of SnxEu1.2â°'x Mo6S8at high pressure and high magnetic field. Physical Review B, 1982, 26, 1442-1445.	3.2	10
366	Exact diagonalization study of magnetic properties at finite temperatures in the t-J model. Physica C: Superconductivity and Its Applications, 1993, 215, 382-390.	1.2	10
367	Spin dependent resistivity in magnetic alloys and multilayers. Journal of Magnetism and Magnetic Materials, 1993, 127, L249-L253.	2.3	10
368	Superconductor–insulator–superconductor quasiparticle tunneling current in Ba1â^'xKxBiO3 grainâ€boundary junctions on SrTiO3 bicrystal substrates. Applied Physics Letters, 1995, 66, 1000-1002.	3.3	10
369	Superconducting State in the Three-Band Hubbard Model: A Variational Monte Carlo Study. Journal of the Physical Society of Japan, 1996, 65, 365-368.	1.6	10
370	Theory of tunnel conductance through a strongly disordered spacer. Journal of Magnetism and Magnetic Materials, 1999, 198-199, 545-547.	2.3	10
371	Geometrical effect on spin current in magnetic nanostructures. Journal of Applied Physics, 2004, 95, 7255-7257.	2.5	10
372	Nonlinear Optical Response of SDW Insulators. Journal of the Physical Society of Japan, 2006, 75, 054703.	1.6	10
373	Effects of frustration on magnetic excitations in a two-leg spin-ladder system. Physical Review B, 2013, 87, .	3.2	10
374	Li(Cd,Mn)P: a new cadmium based diluted ferromagnetic semiconductor with independent spin & map; charge doping. Scientific Reports, 2019, 9, 7490.	3.3	10
375	Localization Versus Superconductivity. Springer Series in Solid-state Sciences, 1982, , 103-112.	0.3	10
376	Fuzzy Walls during Bubble Expansion in Bubble Garnet Films. Japanese Journal of Applied Physics, 1980, 19, 627-637.	1.5	9
377	Density of states of a hole in the half-filled Hubbard model. Physica C: Superconductivity and Its Applications, 1989, 157, 209-214.	1.2	9
378	Spin Correlations around Mobile Holes in an Antiferromagnet. Journal of the Physical Society of Japan, 1990, 59, 3467-3470.	1.6	9

#	Article	IF	CITATIONS
379	Doping dependence of optical conductivity and photoemission spectra in high Tc copper oxides. Physica C: Superconductivity and Its Applications, 1991, 185-189, 1575-1576.	1.2	9
380	Electronic density of states at random interfaces and magnetoresistance in Co-Ni/Cu multilayers. Journal of Magnetism and Magnetic Materials, 1994, 136, L33-L37.	2.3	9
381	Spin injection into superconductors. Journal Physics D: Applied Physics, 2002, 35, 2452-2456.	2.8	9
382	Effect of spin and orbital on thermopower in strongly correlated electron systems. Journal of Magnetism and Magnetic Materials, 2003, 258-259, 216-218.	2.3	9
383	Blood cardioplegia filtration. Perfusion (United Kingdom), 2003, 18, 75-80.	1.0	9
384	Temperature and dimensionality dependencies of optical absorption spectra in Mott insulators. Physical Review B, 2004, 69, .	3.2	9
385	Current-induced domain wall motion in magnetic nanowires with spatial variation. Journal of Magnetism and Magnetic Materials, 2010, 322, 1363-1367.	2.3	9
386	Spinmotive Force Due to Intrinsic Energy of Ferromagnetic Nanowires. Applied Physics Express, 2011, 4, 093003.	2.4	9
387	SPINMOTIVE FORCE IN MAGNETIC NANOSTRUCTURES. Spin, 2013, 03, 1330004.	1.3	9
388	Enhanced spin Hall effect by electron correlations in CuBi alloys. Journal of Applied Physics, 2015, 117,	2.5	9
389	Enhanced orbital magnetic moment in FeCo nanogranules observed by Barnett effect. Journal of Magnetism and Magnetic Materials, 2017, 442, 329-331.	2.3	9
390	Enhanced magneto-optical Kerr effect at Fe/insulator interfaces. Physical Review B, 2017, 96, .	3.2	9
391	Magnetic mechanism for the biological functioning of hemoglobin. Scientific Reports, 2020, 10, 8569.	3.3	9
392	Electronic excitations in strongly correlated systems; 1D vs. 2D. Physica C: Superconductivity and Its Applications, 1997, 282-287, 286-289.	1.2	8
393	Nonlinear optical response in Mott insulators. Journal of Luminescence, 2001, 94-95, 659-662.	3.1	8
394	Effect of nonmagnetic impurities on stripes in high-Tc cuprates. Physica C: Superconductivity and Its Applications, 2001, 357-360, 93-95.	1.2	8
395	Joule heating generated by spin current through Josephson junctions. Journal of Applied Physics, 2001, 89, 7505-7507.	2.5	8
396	Dispersion relation of charge gap excitations in quasi-1D Mott insulators studied by resonant X-ray scattering. Journal of Physics and Chemistry of Solids, 2005, 66, 2212-2215.	4.0	8

#	Article	IF	CITATIONS
397	Composite Excitation of Josephson Phase and Spin Waves in Josephson Junctions with Ferromagnetic Insulator. Journal of the Physical Society of Japan, 2011, 80, 074707.	1.6	8
398	Spin Hall Effect in Superconductors. Japanese Journal of Applied Physics, 2012, 51, 010110.	1.5	8
399	Relativistic effects in scattering of polarized electrons. Europhysics Letters, 2013, 103, 47003.	2.0	8
400	Magnon instability driven by heat current in magnetic bilayers. Physical Review B, 2015, 92, .	3.2	8
401	Sound Attenuation in Magnetic Metals. Progress of Theoretical Physics, 1977, 58, 787-801.	2.0	7
402	Physical Parameters in High-Temperature Superconductors. Springer Series in Solid-state Sciences, 1992, , 29-43.	0.3	7
403	Electronic structures and magnetotransport in magnetic multilayers. Journal of Magnetism and Magnetic Materials, 1993, 126, 479-481.	2.3	7
404	Effects of vortex-pair creation on the vortex dynamics with transport current. Physica C: Superconductivity and Its Applications, 1995, 247, 156-162.	1.2	7
405	Electronic states and excitation spectra of A14â°'xCaxCu24O41(ASr,La). Physica C: Superconductivity and Its Applications, 1997, 282-287, 991-992.	1.2	7
406	Effect of the quantum domain wall on conductance quantization and magnetoresistance in magnetic point contacts. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 84, 107-113.	3.5	7
407	Andreev reflection in narrow ferromagnet/superconductor point contacts. Journal of Applied Physics, 2002, 91, 7032.	2.5	7
408	Pressure enhanced tunnel magnetoresistance in Co-Al-O granular films. Physical Review B, 2003, 68, .	3.2	7
409	Electrical Transport and Magnetoresistance in Co–Al–O Granular Films under High Pressure. Journal of the Physical Society of Japan, 2005, 74, 2783-2790.	1.6	7
410	Dynamical Mean Field Theory of Optical Third Harmonic Generation. Journal of the Physical Society of Japan, 2006, 75, 083706.	1.6	7
411	Nonlocal spin Hall effect and spin–orbit interaction in nonmagnetic metals. Journal of Magnetism and Magnetic Materials, 2007, 310, 2067-2069.	2.3	7
412	Inter-impurity and impurity–host magnetic correlations in semiconductors with low-density transition–metal impurities. Physica B: Condensed Matter, 2009, 404, 1159-1168.	2.7	7
413	Enhanced Pairing Correlations near Oxygen Dopants in Cuprate Superconductors. Physical Review Letters, 2010, 105, 257005.	7.8	7
414	Stability of spinmotive force in perpendicularly magnetized nanowires under high magnetic fields. Applied Physics Letters, 2012, 100, 162401.	3.3	7

#	Article	IF	CITATIONS
415	Magnetic power inverter: AC voltage generation from DC magnetic fields. Applied Physics Letters, 2012, 101, .	3.3	7
416	Theory of the acoustic spin pumping. Solid State Communications, 2014, 198, 22-25.	1.9	7
417	Theory of unidirectional spin heat conveyer. Journal of Applied Physics, 2015, 117, 17C710.	2.5	7
418	Electronic Properties in the Cu-Oxide Superconductors. Springer Series in Solid-state Sciences, 1989, , 66-76.	0.3	7
419	Kondo-like Effect of Atomic Motion in Amorphous Superconductors. Journal of the Physical Society of Japan, 1984, 53, 702-711.	1.6	7
420	Ultrasonic attenuation and exchange striction in rare-earth metals. Physical Review B, 1978, 18, 3736-3738.	3.2	6
421	Effects of Strong Spin Fluctuations on the Superconducting Transition Temperature in Weakly Localized Regime. Journal of the Physical Society of Japan, 1985, 54, 4735-4742.	1.6	6
422	Magnetic and transport properties in Ce compounds: Kondo effect and crystal field. Journal of Magnetism and Magnetic Materials, 1986, 54-57, 355-356.	2.3	6
423	Stability of resonating-valence-bond state in the Hubbard model near half filling. Physical Review B, 1989, 40, 6611-6616.	3.2	6
424	A theory of electrical resistivity for perpendicular current in multilayers. Journal of Magnetism and Magnetic Materials, 1993, 126, 413-415.	2.3	6
425	Giant magnetoresistance in granular alloys: two-band model. Journal of Magnetism and Magnetic Materials, 1994, 136, L18-L22.	2.3	6
426	Impurity effect in the 2D t-J model. Physica C: Superconductivity and Its Applications, 1996, 263, 94-98.	1.2	6
427	A Jordan-Wigner transformation for thet-Jand Hubbard models with holes. Journal of Physics Condensed Matter, 2002, 14, L19-L28.	1.8	6
428	Spin accumulation and resistance due to a domain wall. Journal of Magnetism and Magnetic Materials, 2007, 310, 2058-2060.	2.3	6
429	Coexistence of superconductivity and antiferromagnetism in a self-doped bilayertâ^'t′â^'Jmodel. Physical Review B, 2008, 78, .	3.2	6
430	Mirror symmetry and exchange of magnetic impurities mediated by electrons of Rashba spin–orbit interaction in a four-terminal Landauer setup. Journal Physics D: Applied Physics, 2010, 43, 015003.	2.8	6
431	Spin transfer torque in MTJs with synthetic ferrimagnetic layers by the Keldysh approach. Journal of Applied Physics, 2011, 109, .	2.5	6
432	Spin mechanics. Solid State Communications, 2014, 198, 1-2.	1.9	6

#	Article	IF	CITATIONS
433	Magnetic phase diagram of a frustrated spin ladder. Physical Review B, 2018, 97, .	3.2	6
434	Enhancement of domain-wall mobility detected by NMR at the angular momentum compensation temperature. Physical Review B, 2020, 102 , .	3.2	6
435	Roles of Crystal Fields in Magnetic Superconducting Rare-Earth Rhodium Borides. , 1980, , 561-569.		6
436	Paramagnetic Resonance Line Width near the Critical Point in Antiferromagnets with Dipolar Interaction. Journal of the Physical Society of Japan, 1972, 33, 573-573.	1.6	5
437	Effects of localization on superconducting transition in two-dimensional disordered systems. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1981, 107, 123-124.	0.9	5
438	Tc versus Î"VA correlation in Cu-oxide superconductors. Physica B: Condensed Matter, 1990, 165-166, 983-984.	2.7	5
439	Cluster model calculation of physical parameters in copper oxide superconductors. Physica B: Condensed Matter, 1990, 165-166, 1019-1020.	2.7	5
440	Electronic States of Cuprate Superconductors with Apical Halogen. Journal of the Physical Society of Japan, 1996, 65, 667-670.	1.6	5
441	Interaction of paramagnetic electron with highT c supercurrent in LaSrCuO studied by (μⰒO) probe. Hyperfine Interactions, 1996, 97-98, 387-394.	0.5	5
442	Dynamical scaling behavior of current-electric field characteristics in two-dimensional disordered superconductors. Physica C: Superconductivity and Its Applications, 1997, 274, 351-356.	1.2	5
443	Effects of a magnetic field in Kondo insulators: An exact diagonalization study of the Anderson lattice model. Physica B: Condensed Matter, 1997, 230-232, 421-424.	2.7	5
444	Spin and charge excitations and photoemission spectra in 1D and 2D cuprates. Journal of Physics and Chemistry of Solids, 1998, 59, 1897-1901.	4.0	5
445	Orbital stability in the spin-ordered phase of bilayer manganites as investigated by neutron-diffraction measurements. Physical Review B, 2000, 61, 11270-11273.	3.2	5
446	Effect of Electron Correlation on Phonon Spectra in Cuprates. Journal of Low Temperature Physics, 2003, 131, 257-261.	1.4	5
447	Electron and phonon dynamics in copper oxides. Physica C: Superconductivity and Its Applications, 2003, 392-396, 199-202.	1.2	5
448	Bilayer splitting in overdoped high-Tccuprates. Physical Review B, 2003, 67, .	3.2	5
449	Friedel oscillations in a two-band Hubbard model for CuO chains. Physical Review B, 2004, 69, .	3.2	5
450	Indirect exchange interaction between two local spins embedded in an Aharonov–Bohm Ring. Journal of Magnetism and Magnetic Materials, 2007, 310, 1142-1144.	2.3	5

#	Article	IF	CITATIONS
451	Kondo effect in single-molecule spintronic devices. Journal of Magnetism and Magnetic Materials, 2007, 310, e343-e345.	2.3	5
452	Effect of Interlayer Coupling of Synthetic Ferrimagnetic Free Layer on Current Induced Magnetization Switching in MTJs. IEEE Transactions on Magnetics, 2010, 46, 2136-2139.	2.1	5
453	Orbital-dependent Kondo effect for Fe in Au: Combined approach of density functional theory and quantum Monte Carlo method. Journal of Physics: Conference Series, 2010, 200, 062007.	0.4	5
454	Giant spin Hall effect of Au films with Pt impurities: Surface-assisted skew scattering. Journal of Applied Physics, 2011, 109, 07C502.	2.5	5
455	Towards precise measurement of oscillatory domain wall by ferromagnetic Josephson junction. Applied Physics Letters, 2012, 100, .	3.3	5
456	Theory of mechanical spin current generation via spin–orbit coupling. Solid State Communications, 2014, 198, 57-60.	1.9	5
457	Magnetic Anisotropy by Rashba Spin–Orbit Coupling in Antiferromagnetic Thin Films. Journal of the Physical Society of Japan, 2018, 87, 053703.	1.6	5
458	Anisotropic Spin Distribution and Perpendicular Magnetic Anisotropy in a Layered Ferromagnetic Semiconductor (Ba,K)(Zn,Mn) ₂ As ₂ . ACS Applied Electronic Materials, 2021, 3, 789-794.	4.3	5
459	Barnett field, rotational Doppler effect, and Berry phase studied by nuclear quadrupole resonance with rotation. Physical Review B, 2021, 103, .	3.2	5
460	Motion of Holes in Magnetic Insulators. Springer Series in Materials Science, 1989, , 68-75.	0.6	5
461	Electronic Structure in Superconducting Copper Oxides. Springer Proceedings in Physics, 1992, , 105-115.	0.2	5
462	Gradientless propulsion of magnetic bubble domains. Journal of Magnetism and Magnetic Materials, 1976, 2, 357-360.	2.3	4
463	New ultrasonic attenuation maxima for single crystal dysprosium in a magnetic field. Physics Letters, Section A: General, Atomic and Solid State Physics, 1976, 59, 245-246.	2.1	4
464	Transverse Ultrasonic Attenuation in Magnetic Metals. Progress of Theoretical Physics, 1978, 59, 23-33.	2.0	4
465	Ultrasonic generation by spin wave resonance in evaporated 85% Ni-Fe alloy films. Journal of Magnetism and Magnetic Materials, 1984, 46, 131-141.	2.3	4
466	Chaudhari, Habermeier, and Maekawa Respond:. Physical Review Letters, 1986, 57, 1814-1814.	7.8	4
467	Aharonov-Bohm effect in thin, normal-metal films containing small voids. Physical Review B, 1986, 33, 4303-4306.	3.2	4
468	Dynamics of a hole in the antiferromagnetic states of two- and three-dimensional lattices. Physical Review B, 1994, 49, 6213-6219.	3.2	4

#	Article	IF	CITATIONS
469	Effects of long-range interaction in one-dimensional electron systems. Journal of Physics and Chemistry of Solids, 1995, 56, 1779-1780.	4.0	4
470	Dynamics of a Carrier in the Spin-Fermion Model with Hund Coupling. Journal of the Physical Society of Japan, 1997, 66, 2758-2763.	1.6	4
471	EFFECT OF SPIN GAP ON SINGLE-HOLE EXCITATION SPECTRUM IN THE ONE-DIMENSIONAL t–J— Jâ€2 MODEL. Journal of Physics and Chemistry of Solids, 1998, 59, 1864-1866.	4.0	4
472	Motion of holes in two-dimensional ferromagnetic manganites: comparison with high Tc cuprates. Physica C: Superconductivity and Its Applications, 1999, 317-318, 205-210.	1.2	4
473	Resonant inelastic X-ray scattering spectrum in high-Tc cuprates. Physica B: Condensed Matter, 2000, 284-288, 457-458.	2.7	4
474	Spin-polarized tunneling and spin injection in superconductor-ferromagnet junctions. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2001, 84, 44-48.	3.5	4
475	Effect of four-spin interaction on magnetic excitation in ladder and 2D insulating cuprates. Journal of Physics and Chemistry of Solids, 2001, 62, 273-276.	4.0	4
476	Theory of RIXS in strongly correlated electron systems: Mott gap excitations in cuprates. Journal of Physics and Chemistry of Solids, 2005, 66, 2139-2144.	4.0	4
477	Numerical analysis of spin accumulation due to a domain wall. Journal of Magnetism and Magnetic Materials, 2007, 310, 2055-2057.	2.3	4
478	Momentum-resolved charge excitations in high- <mml:math altimg="si5.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>c<mml:mrow><mml:mi>c<mml:mrow><mml:mi>c<mml:mrow><mml:mi>c<mml:mrow><mml:mrow><mml:mrow><mml:mi>c<mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:< td=""><td>ni4.0/mml:</td><td>m4ow></td></mml:<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mi></mml:mrow></mml:mrow></mml:mrow></mml:mi></mml:mrow></mml:mi></mml:mrow></mml:mi></mml:mrow></mml:mi></mml:mrow></mml:msub></mml:math>	ni 4.0 /mml:	m 4 ow>
479	Temperature dependence of the electronic structure of Sr14Cu24O41 studied by resonant inelastic X-ray scattering. Physica C: Superconductivity and Its Applications, 2010, 470, S145-S146.	1.2	4
480	Possible method to observe the breathing mode of a magnetic domain wall in the Josephson junction. Journal of Physics Condensed Matter, 2014, 26, 255702.	1.8	4
481	Analysis of the spin Hall effect in Culr alloys: Combined approach of density functional theory and Hartree-Fock approximation. Journal of Applied Physics, 2015, 117, 17D510.	2.5	4
482	New p- and n-type ferromagnetic semiconductors: Cr-doped BaZn2As2. AIP Advances, 2017, 7, .	1.3	4
483	Zeeman coupling and Dzyaloshinskii-Moriya interaction driven by electric current vorticity. Physical Review B, 2021, 103, .	3.2	4
484	Effects of Nonlocality on Quantum Transport Phenomena in Microstructures. Japanese Journal of Applied Physics, 1987, 26, 725.	1.5	4
485	Temperature and Frequency Dependences of Line Width of Antiferromagnetic Resonance in Europium Telluride. Journal of the Physical Society of Japan, 1974, 37, 57-62.	1.6	3
486	Elliptical distortion and bias compensation in the gradient propagation of bubble domains. Journal of Applied Physics, 1977, 48, 4672-4677.	2.5	3

#	Article	IF	Citations
487	Magnetic field induced superconductivity. Journal of Applied Physics, 1982, 53, 2622-2624.	2.5	3
488	DYNAMICS OF HOLES IN THE Cu-OXIDE SUPERCONDUCTORS. Modern Physics Letters B, 1989, 03, 1191-1195.	1.9	3
489	Ground state of the two-dimensional Dzyaloshinski-Moriya antiferromagnet. Physica C: Superconductivity and Its Applications, 1991, 185-189, 1509-1510.	1.2	3
490	Electronic structure and crystal structure in high Tc oxides. Physica C: Superconductivity and Its Applications, 1991, 185-189, 168-173.	1.2	3
491	A variational Monte Carlo study of the three-band Hubbard model. Physica B: Condensed Matter, 1993, 186-188, 953-955.	2.7	3
492	Numerical study of the conductance in magnetic superlattices. Journal of Magnetism and Magnetic Materials, 1993, 126, 482-484.	2.3	3
493	Ingap state in doped and undoped cuprates. Journal of Physics and Chemistry of Solids, 1993, 54, 1085-1092.	4.0	3
494	Magnetic and transport properties in (La-X)MnO3 (X:Ca, Ba and Sr). Physica C: Superconductivity and Its Applications, 1994, 235-240, 2199-2200.	1.2	3
495	Giant magnetoresistance in layered Mn oxides. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1995, 31, 193-197.	3.5	3
496	Giant magneto-transport phenomena in inhomogeneous materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1995, 31, 11-16.	3.5	3
497	Excitation spectra in periodic Anderson and Kondo lattices. Physica B: Condensed Matter, 1995, 206-207, 147-150.	2.7	3
498	Electronic states and effective Hamiltonian of CuGeO3. Physica B: Condensed Matter, 1997, 237-238, 135-136.	2.7	3
499	Electronic structure in manganites. Journal of Magnetism and Magnetic Materials, 1998, 177-181, 850-853.	2.3	3
500	Role of Stripes in Spin and Charge Dynamics of Underdoped La2â^'x Sr x CuO4. Journal of Low Temperature Physics, 1999, 117, 211-215.	1.4	3
501	Are spin and charge really separated in HTS? — comparison between theory and experiment. Physica C: Superconductivity and Its Applications, 2000, 341-348, 55-58.	1.2	3
502	Spin accumulation and cotunneling effects in ferromagnetic single-electron transistors. Journal of Magnetism and Magnetic Materials, 2002, 240, 143-145.	2.3	3
503	Thermodynamic and thermoelectric properties of high-temperature cuprate superconductors in the stripe phase. Physical Review B, 2003, 67, .	3.2	3
504	Doping and Momentum Dependence of Charge Dynamics in Nd2 \hat{a} 'xCexCuO4 (x = 0, 0.075, and 0.15) Studied by Resonant Inelastic X-ray Scattering. AIP Conference Proceedings, 2006, , .	0.4	3

#	Article	IF	Citations
505	Effect of magnons on the 0â€'Ï€ transition in a superconductor/half-metallic ferromagnet/superconductor junction. Physica C: Superconductivity and Its Applications, 2007, 463-465, 198-201.	1.2	3
506	Landau–Lifshitz–Gilbert study of the effect of pulse width on spin-transfer torque magnetization switching. Journal of Applied Physics, 2009, 105, 07D130.	2.5	3
507	xmins:mmi="http://www.w3.org/1998/Niath/Niath/NiL" display="inline"> <mml:msub><mml:mrow< td=""><td>3.2 <td>3 th>Ni<mml< td=""></mml<></td></td></mml:mrow<></mml:msub>	3.2 <td>3 th>Ni<mml< td=""></mml<></td>	3 th>Ni <mml< td=""></mml<>
508	Implementation of the DFT+U method and constrained DFT calculations for U and J within a pseudopotential formalism: Application to FeO and LaVO3. Journal of the Korean Physical Society, 2013, 62, 2155-2159.	0.7	3
509	Effects of mechanical rotation and vibration on spin currents. Journal of the Korean Physical Society, 2013, 62, 1404-1409.	0.7	3
510	Zero-Field Fiske Resonance Coupled with Spin-Waves in Ferromagnetic Josephson Junctions. Journal of the Physical Society of Japan, 2014, 83, 074704.	1.6	3
511	First-principles study of electronic and magnetic structures of CoFeB Ta and CoFe TaB heterostructures. Molecular Physics, 2015, 113, 314-318.	1.7	3
512	What determines the sign of the spin Hall effects in Cu alloys doped with 5d elements?. Journal of Magnetism and Magnetic Materials, 2016, 400, 184-187.	2.3	3
513	Generation of Current Vortex by Spin Current in Rashba Systems. Physical Review Letters, 2021, 126, 157202.	7.8	3
514	Spin–charge conversion and current vortex in spin–orbit coupled systems. APL Materials, 2021, 9, .	5.1	3
515	Observation of the Angular Momentum Compensation by Barnett Effect and NMR. Journal of the Physical Society of Japan, 2021, 90, 081003.	1.6	3
516	Half-integer Shapiro steps in strong ferromagnetic Josephson junctions. Physical Review B, 2021, 104, .	3.2	3
517	Reply to "Comment on â€~Observation of Barnett fields in solids by nuclear magnetic resonanceâ€â€™ [Appl. Phys. Express 7, 063004 (2014)]. Applied Physics Express, 2020, 13, 109102.	2.4	3
518	Asymmetry of Magnetoresistance in Microstructures. Springer Proceedings in Physics, 1988, , 329-332.	0.2	3
519	Phase Coherence, Nonlocal Conductivity and A-B Effect in Normal Metals. Japanese Journal of Applied Physics, 1987, 26, 727.	1.5	2
520	Transport and thermal properties in RVB states. Physica C: Superconductivity and Its Applications, 1988, 156, 679-689.	1.2	2
521	Spin structure around mobile holes in an antiferromagnet. Physica B: Condensed Matter, 1990, 165-166, 1029-1030.	2.7	2
522	Electronic structure of insulating cuprates: Role of Madelung potential in the charge-transfer gap and superexchange interaction. Physica C: Superconductivity and Its Applications, 1991, 185-189, 1721-1722.	1.2	2

#	Article	IF	CITATIONS
523	Bound state of two holes in the t-J model. Physica C: Superconductivity and Its Applications, 1991, 185-189, 1723-1724.	1.2	2
524	STRUCTURAL DEPENDENCE OF THE ELECTRONIC STATES OF HIGH-Tc COPPER OXIDES. Modern Physics Letters B, 1991, 05, 1315-1332.	1.9	2
525	Dynamics of a hole in the spin-fermion model. Physica B: Condensed Matter, 1993, 186-188, 956-958.	2.7	2
526	Magnetic flux line in a disordered medium. Physica C: Superconductivity and Its Applications, 1994, 233, 195-202.	1.2	2
527	Exact diagonalization study of spin and charge dynamics in the t-J model. Physica C: Superconductivity and Its Applications, 1994, 235-240, 2231-2232.	1.2	2
528	Gutzwiller approach to the three-band Hubbard model the antiferromagnetic phase. Physica C: Superconductivity and Its Applications, 1995, 242, 311-325.	1.2	2
529	Numerical study of magnetoresistance in granular alloys. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 505-506.	2.3	2
530	A theory of conductivity for perpendicular currents through a single random interface. Journal of Magnetism and Magnetic Materials, 1996, 156, 343-344.	2.3	2
531	Computer simulation of the magnetization process in a pulse external field. Physica C: Superconductivity and Its Applications, 1996, 263, 21-24.	1.2	2
532	Dynamics of a hole in spin 1 chain. Physica C: Superconductivity and Its Applications, 1996, 263, 118-121.	1.2	2
533	Theory of resonant X-ray scattering as a probe to detect the orbital orderings and excitations in CMR manganites. Journal of Magnetism and Magnetic Materials, 2001, 233, 21-30.	2.3	2
534	Nonlinear optical response in one-dimensional Mott insulators. Journal of Physics and Chemistry of Solids, 2002, 63, 1599-1602.	4.0	2
535	Exact-diagonalization study of thermoelectric response in strongly correlated electron systems. Physica B: Condensed Matter, 2003, 329-333, 896-897.	2.7	2
536	Resonant inelastic X-ray scattering in manganites with perovskite structure. Physica B: Condensed Matter, 2004, 345, 15-18.	2.7	2
537	Doping dependence of resonant inelastic X-ray scattering in high-Tc cuprates. Physica C: Superconductivity and Its Applications, 2004, 412-414, 143-146.	1.2	2
538	Theory of Cu L-edge resonant inelastic X-ray scattering in insulating cuprates. Journal of Physics and Chemistry of Solids, 2006, 67, 274-276.	4.0	2
539	Quantum interference due to crossed Andreev reflection in a d-wave superconductor with two nano-contacts. Journal of Physics and Chemistry of Solids, 2006, 67, 325-328.	4.0	2
540	Temperature dependence of Josephson current in a superconductor/ferromagnet/superconductor junction. Physica C: Superconductivity and Its Applications, 2007, 460-462, 1323-1324.	1.2	2

#	Article	IF	CITATIONS
541	Sign Reversal of AC Josephson Current in a Ferromagnetic Josephson Junction. Journal of the Physical Society of Japan, 2009, 78, 014708.	1.6	2
542	Magnetic properties of diluted magnetic semiconductors: Quantum Monte Carlo approach. Journal of Magnetism and Magnetic Materials, 2010, 322, 1192-1194.	2.3	2
543	Spin treacle in a frustrated magnet observed with spin current. Physical Review B, 2020, 102, .	3.2	2
544	Kondo Effect versus Crystal Field. Springer Series in Solid-state Sciences, 1985, , 90-99.	0.3	2
545	MAGNETIC IMPURITY STATES AND FERROMAGNETIC INTERACTION IN DILUTED MAGNETIC SEMICONDUCTORS. , 2006, , .		2
546	Theory of Weak Localization and Superconducting Fluctuations. Springer Series in Solid-state Sciences, 1985, , 130-137.	0.3	2
547	Magnetization in the mixed state of ferromagnetic superconductors. Journal of Magnetism and Magnetic Materials, 1983, 31-34, 505-506.	2.3	1
548	Comment on "Localization and Size Effects in Single-Crystal Au Films". Physical Review Letters, 1986, 57, 1813-1813.	7.8	1
549	Simulations of magnetization process in superconducting films. Physica C: Superconductivity and Its Applications, 1991, 185-189, 1717-1718.	1.2	1
550	Quantum spin-liquid state with a hole. Physical Review B, 1991, 43, 186-192.	3.2	1
551	Spectral function and Fermi surface in high-Tc cuprates. Physica B: Condensed Matter, 1993, 186-188, 928-930.	2.7	1
552	Raman scattering in the two-dimensional Hubbard model. Physica B: Condensed Matter, 1993, 186-188, 968-970.	2.7	1
553	Theory of Magnetoresistance in Multilayers. IEEE Translation Journal on Magnetics in Japan, 1993, 8, 370-380.	0.1	1
554	Dynamics of a hole in the antiferromagnetic state of a layered structure. Physica B: Condensed Matter, 1994, 194-196, 1457-1458.	2.7	1
555	Electronic structure of the Hubbard and extended Hubbard models: An exact diagonalization study. Physica B: Condensed Matter, 1994, 194-196, 1569-1570.	2.7	1
556	Bogoliubov quasiparticle excitations in the negative-U Hubbard model: a small-cluster study. Physica C: Superconductivity and Its Applications, 1994, 235-240, 2169-2170.	1.2	1
557	Antiferromagnetic state in the three-band Hubbard model. Physica C: Superconductivity and Its Applications, 1994, 235-240, 2197-2198.	1.2	1
558	Anomalous spectral function of the 1D and 2Dt-J models. European Physical Journal D, 1996, 46, 1953-1954.	0.4	1

#	Article	IF	Citations
559	Low energy excitations of the Anderson lattice model. Physica C: Superconductivity and Its Applications, 1996, 263, 107-110.	1.2	1
560	Dynamics of a carrier in the antiferromagnetic state with strong Hund coupling. Physica C: Superconductivity and Its Applications, 1996, 263, 142-145.	1.2	1
561	Quantum Monte Carlo study of a magnetic impurity in a strongly correlated electron system. Physica C: Superconductivity and Its Applications, 1996, 263, 90-93.	1.2	1
562	Single-particle excitation in one-dimensional extended Hubbard model. Physica B: Condensed Matter, 1997, 230-232, 1050-1053.	2.7	1
563	Magnetic and orbital excitations in manganese oxides. Physica B: Condensed Matter, 1997, 230-232, 1058-1060.	2.7	1
564	ELECTRONIC STATES AND EXCITATION SPECTRA OF COPPER OXIDES WITH LADDER AND/OR CHAIN. Journal of Physics and Chemistry of Solids, 1998, 59, 2224-2226.	4.0	1
565	Field induced transition from metal to insulator in the colossal magneto-resistance manganites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 63, 151-158.	3.5	1
566	Doping dependence of electronic excitations in high Tc superconducting cuprates. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1999, 63, 159-162.	3.5	1
567	Resonant inelastic X-ray scattering in copper oxides. Physica C: Superconductivity and Its Applications, 2000, 341-348, 205-206.	1.2	1
568	Systematic study of magnetic interactions in insulating cuprates. Physica C: Superconductivity and Its Applications, 2000, 341-348, 473-474.	1.2	1
569	Nonequilibrium Spin Fluctuations in Nonmagnetic Single-Electron Transistors and Quantum Dots. Journal of Superconductivity and Novel Magnetism, 2003, 16, 343-346.	0.5	1
570	Resonant two-magnon Raman scattering in two-dimensional Mott insulators. Physica B: Condensed Matter, 2003, 329-333, 775-776.	2.7	1
571	Nonlinear optical response in two-dimensional Mott insulators. Physica B: Condensed Matter, 2003, 329-333, 918-919.	2.7	1
572	Multiple-superconducting amplitudes in multi-layer high-Tc cuprates. Physica C: Superconductivity and Its Applications, 2003, 388-389, 51-52.	1.2	1
573	Tunneling spectra in multilayered superconductors with multiple gaps. Physica C: Superconductivity and Its Applications, 2003, 392-396, 123-126.	1.2	1
574	Numerical study of phonon spectra in strongly correlated electron systems. Physica C: Superconductivity and Its Applications, 2003, 388-389, 59-60.	1.2	1
575	Andreev reflection in ferromagnet/superconductor/ferromagnet junctions. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1523-E1524.	2.3	1
576	Spin injection and detection in F/N/F and F/S/F nanostructures. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1423-E1424.	2.3	1

#	Article	IF	CITATIONS
577	Momentum Dependence of Mott Gap Excitations in Optimally Doped YBa2Cu3O7â^'δ Studied by Resonant Inelastic X-ray Scattering. AIP Conference Proceedings, 2006, , .	0.4	1
578	Fermi surface splittings in multilayered high-Tc cuprates. Physica C: Superconductivity and Its Applications, 2006, 445-448, 23-25.	1.2	1
579	Strength ofdx2â^'y2pairing in the two-leg Hubbard ladder. Physical Review B, 2006, 74, .	3.2	1
580	Charge excitations and resonant inelastic X-ray scattering in ladder cuprates. Physica C: Superconductivity and Its Applications, 2007, 460-462, 969-970.	1.2	1
581	Theoretical study of resonant inelastic X-ray scattering in ladder cuprates. Journal of Magnetism and Magnetic Materials, 2007, 310, 972-974.	2.3	1
582	Effect of Kondo resonance on optical third harmonic generation. Journal of Magnetism and Magnetic Materials, 2007, 310, 960-962.	2.3	1
583	Theory of O– transition in a superconductor/ferromagnet/superconductor junction. Journal of Magnetism and Magnetic Materials, 2007, 310, 2456-2458.	2.3	1
584	Theoretical study of the electronic structure in -pyrochlore oxides. Journal of Magnetism and Magnetic Materials, 2007, 310, 1005-1007.	2.3	1
585	Theoretical study of ac Josephson effect in a double barrier Josephson junction. Physica C: Superconductivity and Its Applications, 2008, 468, 1907-1909.	1.2	1
586	Theoretical study of thermoelectric and Hall effects in the layered cobalt oxides, <mml:math altimg="si7.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>Na</mml:mi></mml:mrow><mml:mrow><mml:mi>x<td>ıml:#i?<td>ml:<mark>1</mark>mrow></td></td></mml:mi></mml:mrow></mml:msub></mml:math>	ıml:#i? <td>ml:<mark>1</mark>mrow></td>	ml: <mark>1</mark> mrow>
587	Proximity effects in a superconductor/ferromagnet junction. Journal of Physics and Chemistry of Solids, 2008, 69, 3257-3260.	4.0	1
588	Three dimensional simulations of spin Hall effect in magnetic nanostructures. Journal of Applied Physics, 2008, 103, 07A715.	2.5	1
589	Thermoelectric Effect in Transition Metal Oxides. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, , 69-79.	0.3	1
590	Geometrical dependence of Josephson current induced by ferromagnetic resonance in ferromagnetic Josephson junctions. Physica C: Superconductivity and Its Applications, 2010, 470, S819-S821.	1.2	1
591	Theory of resonant inelastic X-ray scattering spectrum for Ni impurities in cuprates. Journal of Physics and Chemistry of Solids, 2011, 72, 354-357.	4.0	1
592	Reduction of intrinsic critical current density under a magnetic field along the hard axis of a free layer in a magnetic tunnel junction. Physical Review B, 2011, 84, .	3.2	1
593	Theoretical Study of Resonant Inelastic X-ray Scattering Spectrum in Nickelates. Journal of Physics: Conference Series, 2012, 400, 032105.	0.4	1
594	Real-time analysis of the spinmotive force due to domain wall motion. Journal of the Korean Physical Society, 2013, 62, 1802-1806.	0.7	1

#	Article	IF	Citations
595	Spin Waves, Spin Currents and Spin Seebeck Effect. Topics in Applied Physics, 2013, , 119-128.	0.8	1
596	Skew Scattering from Correlated Systems: Impurities and Collective Excitations in the Spin Hall Effect. Journal of the Physical Society of Japan, 2017, 86, 011005.	1.6	1
597	Half-integer Shapiro-steps in superconducting qubit with a π-Josephson junction. Applied Physics Express, 2021, 14, 103001.	2.4	1
598	High Temperature Superconductors as a Member of Transition Metal Oxides. Springer Series in Solid-state Sciences, 1999, , 136-143.	0.3	1
599	Thermal Effects in Spintronics: Physics and Applications. , 2016, , 1553-1576.		1
600	Nuclear Quadrupole Resonance Frequency in Multilayered Cuprates. Journal of the Physical Society of Japan, 2009, 78, 123704.	1.6	1
601	Lifshitz Transition Induced by Magnetic Field in Frustrated Two-Leg Spin-Ladder Systems. , 2015, , .		1
602	Charge and Orbital Ordering of Manganites Observed by Resonant X-Ray Scattering. , 2004, , 383-416.		1
603	Negatively Charged Muonium as a Detector of Electron Spin Polarization: a Puzzle and a Possible Theory. , 2014, , .		1
604	Spin-Mechatronics—mechanical generation of spin and spin current. , 2017, , .		1
605	Fluctuations and Instabilities in Mixed States of Ferromagnetic Superconductors. Journal of the Physical Society of Japan, 1982, 51, 749-759.	1.6	1
606	Gap structure and spin excitation in high-Tc oxides. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1987, 148, 388-390.	0.9	0
607	Thermopower and resistivity in strongly correlated electron systems. Physica C: Superconductivity and Its Applications, 1989, 162-164, 1473-1474.	1.2	0
608	Hole and its surrounding spins in a quantum spin-liquid state. Physica B: Condensed Matter, 1990, 165-166, 1027-1028.	2.7	0
609	Dynamics of a magnetic flux in type-II superconductors. Physica C: Superconductivity and Its Applications, 1991, 185-189, 1719-1720.	1.2	0
610	Conference summary: Theory. Physica B: Condensed Matter, 1993, 186-188, 1080-1082.	2.7	0
611	Origin of the magnetic anisotropy and spin-wave gap in La2CuO4. Physica B: Condensed Matter, 1994, 194-196, 279-280.	2.7	0
612	Theory of magnetism in low symmetry crystals: cuprates and nickelates. Physica C: Superconductivity and Its Applications, 1994, 235-240, 1551-1552.	1.2	0

#	Article	IF	CITATIONS
613	Excitations and superconductivity in the two-dimensional t-J model. Physica C: Superconductivity and Its Applications, 1994, 235-240, 2277-2278.	1.2	0
614	Charge- and spin-susceptibilities in the one-dimensional hubbard model with long-range interaction. Physica C: Superconductivity and Its Applications, 1994, 235-240, 2303-2304.	1.2	0
615	Magnetic flux structure in inhomogeneous superconductors. Physica C: Superconductivity and Its Applications, 1994, 235-240, 2421-2422.	1.2	O
616	Fermi-surface and charge-spin excitations in strongly correlated electron systems. Journal of Low Temperature Physics, 1995, 99, 467-472.	1.4	0
617	Electron correlations in high-Tc superconductors. Physica B: Condensed Matter, 1995, 206-207, 641-644.	2.7	0
618	Complex resistivity of two-dimensional vortex systems in random media. Physica C: Superconductivity and Its Applications, 1995, 251, 355-360.	1.2	0
619	Magnetoresistance in metallic multilayers by the cellular method. Journal of Magnetism and Magnetic Materials, 1995, 140-144, 499-500.	2.3	0
620	Spin and orbital orderings and their excitations in perovskite Mn oxides. European Physical Journal D, 1996, 46, 3225-3231.	0.4	0
621	Carrier dynamics and magneto-transport in Kondo-Hubbard model. European Physical Journal D, 1996, 46, 1859-1860.	0.4	0
622	Spin and orbital excitations in perovskite Mn oxides. European Physical Journal D, 1996, 46, 1861-1862.	0.4	0
623	Localized spins and vacancies in the two-dimensionalt-J model. European Physical Journal D, 1996, 46, 1885-1886.	0.4	0
624	Effects of Hund coupling on magneto-transport in perovskite Mn oxides. Physica C: Superconductivity and Its Applications, 1996, 263, 138-141.	1.2	0
625	Electronic states of cuprate superconductors containing halogen or carbon. Journal of Low Temperature Physics, 1996, 105, 1547-1552.	1.4	0
626	Title is missing!. , 1997, 105, 175-179.		0
627	Magnetic properties of a magnetic impurity in a strongly correlated electronic system. Physica B: Condensed Matter, 1997, 230-232, 1054-1057.	2.7	0
628	Spin and orbital orderings in perovskite manganites. Physica B: Condensed Matter, 1997, 237-238, 48-50.	2.7	0
629	Perpendicular electrical transport through a single random interface. Physica B: Condensed Matter, 1997, 237-238, 264-266.	2.7	0
630	Spectral properties of one-dimensional copper oxides. Physica C: Superconductivity and Its Applications, 1997, 282-287, 1785-1786.	1.2	0

#	Article	IF	CITATIONS
631	Electronic structure and excitation spectra in doped nickelates. Physica B: Condensed Matter, 2000, 284-288, 1471-1472.	2.7	0
632	Charge stripes in underdoped La2â^'xSrxCuO4. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1771-1774.	1.2	0
633	Temperature dependence of spin and charge correlations in stripe phase. Physica C: Superconductivity and Its Applications, 2000, 341-348, 1787-1788.	1.2	0
634	Effect of charge stripes on electronic and magnetic properties in high-Tc cuprates. Journal of Physics and Chemistry of Solids, 2001, 62, 269-271.	4.0	0
635	Theoretical study of orbital ordering/fluctuation and resonant X-ray scattering in manganites. Journal of Magnetism and Magnetic Materials, 2001, 226-230, 908-910.	2.3	0
636	Theory of Orbital Dynamics and their Observation by Polarized Light/X-Ray Scatterings. Journal of the Physical Society of Japan, 2002, 71, 60-63.	1.6	0
637	Two Ferromagnetic States in Magnetoresistive Manganites-First Order Transition Driven by Orbitals. , 2002, , 57-70.		0
638	Electronic excitations in the antiferromagnetic phase of electron-doped high-Tc cuprates. Physica C: Superconductivity and Its Applications, 2002, 378-381, 178-181.	1.2	0
639	Quasiparticle excitations in multi-layer cuprate superconductors. Physica C: Superconductivity and Its Applications, 2002, 378-381, 333-336.	1.2	0
640	Dynamics of orbital degree of freedom in transition-metal oxides. Journal of Physics and Chemistry of Solids, 2002, 63, 1343-1346.	4.0	0
641	Charge dynamics in electron-underdoped high-Tc cuprates. Journal of Physics and Chemistry of Solids, 2002, 63, 2357-2359.	4.0	0
642	Spin-current-induced Hall effect in superconductors. Physica B: Condensed Matter, 2003, 329-333, 1263-1264.	2.7	0
643	Theoretical study of orbital excitations by resonant inelastic X-ray scattering in doped manganites. Physica B: Condensed Matter, 2003, 329-333, 761-762.	2.7	0
644	Orbital ordering and fluctuation in perovskite titanates. Physica B: Condensed Matter, 2003, 329-333, 763-764.	2.7	0
645	Theory of slightly doped Mott insulator. Physica C: Superconductivity and Its Applications, 2003, 388-389, 15-18.	1.2	0
646	Bi- and tri-layer splittings in a new formulation for the \hat{t} model of cuprates. Physica C: Superconductivity and Its Applications, 2003, 388-389, 55-56.	1.2	0
647	Andreev reflection in ferromagnet/superconductor/ferromagnet structures. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 18, 52-53.	2.7	0
648	Spin accumulation in ferromagnetic single-electron transistors. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 18, 54-55.	2.7	0

#	Article	IF	CITATIONS
649	Resonant two-magnon Raman scattering in two-dimensional and ladder-type Mott insulators. Physica C: Superconductivity and Its Applications, 2003, 392-396, 203-206.	1.2	0
650	Electronic excitations in hole-doped La1â^'xSrxMnO3 studied by resonant inelastic X-ray scattering. Journal of Physics and Chemistry of Solids, 2005, 66, 2157-2162.	4.0	0
651	Genetic changes in the interferon sensitivity-determining region of hepatitis C virus (HCV) during the natural course of infection: an implication for the gene function in the role of chronic infection. Journal of Gastroenterology, 2005, 40, 113-115.	5.1	0
652	Theoretical study of angle-resolved two-photon photoemission in two-dimensional insulating cuprates. Physical Review B, 2005, 72, .	3.2	0
653	Supercurrent pumping by ferromagnetic resonance in ferromagnetic Josephson junctions. Physica C: Superconductivity and Its Applications, 2007, 463-465, 989-992.	1,2	0
654	Electronic states of multilayered high-Tc cuprates with charge imbalance: Gutzwiller approximation on interlayer hopping. Physica C: Superconductivity and Its Applications, 2007, 460-462, 216-217.	1,2	0
655	Pairing correlations in the Hubbard ladder. Physica C: Superconductivity and Its Applications, 2007, 460-462, 1072-1073.	1,2	0
656	0- and π-states in Josephson coupling through magnetic layers. Physica C: Superconductivity and Its Applications, 2007, 463-465, 23-26.	1,2	0
657	Effect of electron–phonon coupling on spin–charge separation in one-dimensional strongly correlated electron systems. Journal of Magnetism and Magnetic Materials, 2007, 310, 975-977.	2.3	0
658	Magnetic correlations of the Hubbard model on frustrated lattices. Journal of Magnetism and Magnetic Materials, 2007, 310, 511-513.	2.3	0
659	Title is missing!. Journal of Magnetism and Magnetic Materials, 2007, 310, v-vii.	2.3	0
660	Exact diagonalization study on nonmagnetic impurity effects in high- <mml:math altimg="si26.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>T</mml:mi></mml:mrow><mml:mrow><mml:mi>c<td>mi^{4.0}/mml</td><td>:mrow></td></mml:mi></mml:mrow></mml:msub></mml:math>	mi ^{4.0} /mml	:mrow>
661	Effect of electron–phonon interaction on optical response in one-dimensional cuprates. Journal of Physics and Chemistry of Solids, 2008, 69, 3070-3073.	4.0	O
662	Spin Current in Superconductors. Progress of Theoretical Physics Supplement, 2008, 176, 341-354.	0.1	0
663	Mechanism on spatial variation of pairing gap by apical atoms in cuprates. Journal of Physics: Conference Series, 2009, 150, 052169.	0.4	0
664	Phase and spin dynamics in a superconductor/ferromagnet/superconductor junction. Journal of Physics: Conference Series, 2009, 150, 052069.	0.4	0
665	Angular dependence of spin transfer torque on magnetic tunnel junctions with synthetic ferrimagnetic free layer. Journal of Physics: Conference Series, 2010, 200, 062008.	0.4	0
666	Theoretical study of resonant inelastic X-ray scattering spectrum in the Hubbard ladder. Physica C: Superconductivity and Its Applications, 2010, 470, S232-S233.	1.2	0

#	Article	IF	Citations
667	Resonant inelastic X-ray scattering of <mml:math altimg="si3.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:< td=""><td>w 1:2 w > < mml:ı</td><td>mn>2</td></mml:<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	w 1:2 w > < mml:ı	mn>2
668	A New Type Diluted Magnetic Semiconductor Li(Zn,Mn)As. Journal of Physics: Conference Series, 2012, 400, 032033.	0.4	0
669	Heat and spin. Journal of the Korean Physical Society, 2013, 62, 1985-1989.	0.7	0
670	Theoretical Study of Electronic States and Excitation Spectra in Ni-Substituted Cuprates., 2014,,.		0
671	Spin–Spin Correlation Enhanced by Impurities in a Frustrated Two-Leg Spin Ladder. , 2014, , .		0
672	Spinmotive Force as a New Energy Conversion Mechanism. Journal of the Magnetics Society of Japan, 2014, 38, 75-77.	0.9	0
673	Quasi-Spin Correlations in a Frustrated Quantum Spin Ladder. Physics Procedia, 2015, 75, 861-867.	1.2	0
674	Thermal Effects in Spintronics: Physics and Applications. , 2015, , 1-20.		0
675	Temperature dependence of enhanced spin relaxation time in metallic nanoparticles: Experiment and theory. Physical Review B, 2016, 93, .	3.2	0
676	John C. Slonczewski, whose pioneering contributions to magnetism include the prediction of spin-transfer torques in nanomagnets, passed away on May 31, 2019. Journal of Magnetism and Magnetic Materials, 2020, 509, 166570.	2.3	0
677	A memorial symposium for John C. Slonczewski at the 64th MMM conference. AIP Advances, 2020, 10, 030401.	1.3	0
678	Generation of Effective Field Gradient and Spin Current by a Flow of Liquid Helium-3. Journal of Low Temperature Physics, 2021, 203, 255-261.	1.4	0
679	Charge Stripes and Electronic States in Underdoped La2-x Sr x CuO4. , 2000, , 164-166.		0
680	Magnetic Interaction in 1D, 2D and Ladder Cuprates. , 2000, , 194-196.		0
681	Evolution of Spectral Function from Insulator to Superconductor: What do We Learn from Angle-Resolved Photoemission?., 2000,, 170-172.		0
682	Preface: Special issue in honour of Professor T Shinjo containing selected papers from the 17th International Colloquium on Magnetic Films and Surfaces. Journal Physics D: Applied Physics, 2002, 35,	2.8	0
683	Two-Orbitals Model and Orbital Order. Springer Series in Solid-state Sciences, 2003, , 169-191.	0.3	О
684	Dynamical Mean Field Theory Study of the Linear and Nonlinear Optics of Kondo Systems. Journal of the Physical Society of Japan, 2007, 76, 044706.	1.6	0

#	Article	IF	Citations
685	CURRENT-INDUCED DOMAIN WALL CREEP IN MAGNETIC WIRES. , 2009, , .		O
686	SPIN CURRENT DISTRIBUTIONS AND SPIN HALL EFFECT IN NONLOCAL MAGNETIC NANOSTRUCTURES., 2009, , .		0
687	Superconducting Energy Gap and Pairing Interaction in High Tc Oxides. , 1987, , 411-419.		O
688	GAP STRUCTURE AND SPIN EXCITATION IN HIGH-Tc OXIDES. , 1987, , 388-390.		0
689	Electronic States in Oxide Superconductors. , 1989, , 127-131.		O
690	Study of High Temperature Superconducting Oxides-I. Theory TEION KOGAKU (Journal of Cryogenics) Tj ETQq0	0 0 rgBT /	/Overlock 10 T
691	Theory of Orbital Orderings and Excitations in Perovskite Manganites –Their Observation by Resonant X-ray Scattering–. Japanese Journal of Applied Physics, 1999, 38, 400.	1.5	O
692	Theory of Anomalous X-ray Scattering in a Variety of Orbital Ordered Manganites. Springer Series in Solid-state Sciences, 1999, , 84-94.	0.3	0
693	Roles of Orbitals in Transition Metal Oxides. Springer Series in Solid-state Sciences, 1999, , 69-83.	0.3	O
694	Spin Hall Effect., 2017,,.		0
695	Spinmotive force., 2017,,.		O
696	Electronic State in Co-Oxide-Similar to Cuprates?., 2006,, 201-212.		0
697	Skyrmion Creation and Annihilation by Electric Current Vorticity. IEEE Transactions on Magnetics, 2022–58–1-7	2.1	O

Magnetic Properties and Electronic Configurations of Mn Ions in the Diluted Magnetic Semiconductor

Ba_{1â^'}<i>_x</i>K<i>_x</i>(zn_{1â^'}<i>_y</i>Mn<i><subøy</subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i>)<subøx/i
)<subøx/i
)< 698