Malin E V Johansson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4424865/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Transglutaminase 3 crosslinks the secreted gel-forming mucus component Mucin-2 and stabilizes the colonic mucus layer. Nature Communications, 2022, 13, 45.	12.8	23
2	Human intelectinâ€ 2 (ITLN2) is selectively expressed by secretory Paneth cells. FASEB Journal, 2022, 36, e22200.	0.5	10
3	A Fiber-Rich Diet and Radiation-Induced Injury in the Murine Intestinal Mucosa. International Journal of Molecular Sciences, 2022, 23, 439.	4.1	4
4	An intercrypt subpopulation of goblet cells is essential for colonic mucus barrier function. Science, 2021, 372, .	12.6	144
5	Human intelectin-1 (ITLN1) genetic variation and intestinal expression. Scientific Reports, 2021, 11, 12889.	3.3	13
6	The IgGFc-binding protein FCGBP is secreted with all GDPH sequences cleaved but maintained by interfragment disulfide bonds. Journal of Biological Chemistry, 2021, 297, 100871.	3.4	20
7	Forming a mucus barrier along the colon. Science, 2020, 370, 402-403.	12.6	18
8	Protein Turnover in Epithelial Cells and Mucus along the Gastrointestinal Tract Is Coordinated by the Spatial Location and Microbiota. Cell Reports, 2020, 30, 1077-1087.e3.	6.4	41
9	Potential roles of gut microbiome and metabolites in modulating ALS in mice. Nature, 2019, 572, 474-480.	27.8	454
10	The Nlrp6 inflammasome is not required for baseline colonic inner mucus layer formation or function. Journal of Experimental Medicine, 2019, 216, 2602-2618.	8.5	83
11	Calcium-activated chloride channel regulator 1 (CLCA1) forms non-covalent oligomers in colonic mucus and has mucin 2–processing properties. Journal of Biological Chemistry, 2019, 294, 17075-17089.	3.4	25
12	Interleukin 4 induces rapid mucin transport, increases mucus thickness and quality and decreases colitis and <i>Citrobacter rodentium</i> in contact with epithelial cells. Virulence, 2019, 10, 97-117.	4.4	26
13	Normal Calcium-Activated Anion Secretion in a Mouse Selectively Lacking TMEM16A in Intestinal Epithelium. Frontiers in Physiology, 2019, 10, 694.	2.8	8
14	Structural weakening of the colonic mucus barrier is an early event in ulcerative colitis pathogenesis. Gut, 2019, 68, 2142-2151.	12.1	271
15	Study of mucin turnover in the small intestine by in vivo labeling. Scientific Reports, 2018, 8, 5760.	3.3	60
16	Bifidobacteria or Fiber Protects against Diet-Induced Microbiota-Mediated Colonic Mucus Deterioration. Cell Host and Microbe, 2018, 23, 27-40.e7.	11.0	477
17	The central exons of the human MUC2 and MUC6 mucins are highly repetitive and variable in sequence between individuals. Scientific Reports, 2018, 8, 17503.	3.3	20
18	Calcium-activated Chloride Channel Regulator 1 (CLCA1) Controls Mucus Expansion in Colon by Proteolytic Activity, FBioMedicine, 2018, 33, 134-143.	6.1	63

MALIN E V JOHANSSON

#	Article	IF	CITATIONS
19	Core 1– and 3–derived O-glycans collectively maintain the colonic mucus barrier and protect against spontaneous colitis in mice. Mucosal Immunology, 2017, 10, 91-103.	6.0	128
20	Postnatal development of the small intestinal mucosa drives age-dependent, regio-selective susceptibility to Escherichia coli K1 infection. Scientific Reports, 2017, 7, 83.	3.3	24
21	Immunological aspects of intestinal mucus and mucins. Nature Reviews Immunology, 2016, 16, 639-649.	22.7	613
22	Gram-positive bacteria are held at a distance in the colon mucus by the lectin-like protein ZG16. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13833-13838.	7.1	113
23	Searching the Evolutionary Origin of Epithelial Mucus Protein Components—Mucins and FCGBP. Molecular Biology and Evolution, 2016, 33, 1921-1936.	8.9	104
24	A sentinel goblet cell guards the colonic crypt by triggering Nlrp6-dependent Muc2 secretion. Science, 2016, 352, 1535-1542.	12.6	408
25	The Goblet Cell Protein Clca1 (Alias mClca3 or Gob-5) Is Not Required for Intestinal Mucus Synthesis, Structure and Barrier Function in Naive or DSS-Challenged Mice. PLoS ONE, 2015, 10, e0131991.	2.5	19
26	The composition of the gut microbiota shapes the colon mucus barrier. EMBO Reports, 2015, 16, 164-177.	4.5	519
27	New developments in goblet cell mucus secretion and function. Mucosal Immunology, 2015, 8, 712-719.	6.0	541
28	Normalization of Host Intestinal Mucus Layers Requires Long-Term Microbial Colonization. Cell Host and Microbe, 2015, 18, 582-592.	11.0	368
29	The colonic mucus protection depends on the microbiota. Gut Microbes, 2015, 6, 326-330.	9.8	46
30	Loss of NHE8 expression impairs intestinal mucosal integrity. American Journal of Physiology - Renal Physiology, 2015, 309, G855-G864.	3.4	34
31	Altered Mucus Glycosylation in Core 1 O-Glycan-Deficient Mice Affects Microbiota Composition and Intestinal Architecture. PLoS ONE, 2014, 9, e85254.	2.5	114
32	Spontaneous Colitis in Muc2-Deficient Mice Reflects Clinical and Cellular Features of Active Ulcerative Colitis. PLoS ONE, 2014, 9, e100217.	2.5	93
33	AGR2, an Endoplasmic Reticulum Protein, Is Secreted into the Gastrointestinal Mucus. PLoS ONE, 2014, 9, e104186.	2.5	58
34	Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut, 2014, 63, 281-291.	12.1	717
35	Slc26a3 deficiency is associated with loss of colonic <scp>HCO</scp> ₃ ^{â^'} secretion, absence of a firm mucus layer and barrier impairment in mice. Acta Physiologica, 2014, 211, 161-175.	3.8	67
36	Microbial-induced meprin Î ² cleavage in MUC2 mucin and a functional CFTR channel are required to release anchored small intestinal mucus. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12396-12401.	7.1	159

MALIN E V JOHANSSON

#	Article	IF	CITATIONS
37	Is the Intestinal Goblet Cell a Major Immune Cell?. Cell Host and Microbe, 2014, 15, 251-252.	11.0	51
38	The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunological Reviews, 2014, 260, 8-20.	6.0	895
39	Mucus Layers in Inflammatory Bowel Disease. Inflammatory Bowel Diseases, 2014, 20, 2124-2131.	1.9	111
40	Increased Understanding of the Biochemistry and Biosynthesis of MUC2 and Other Gel-Forming Mucins Through the Recombinant Expression of Their Protein Domains. Molecular Biotechnology, 2013, 54, 250-256.	2.4	39
41	Helicobacter pylori Infection Impairs the Mucin Production Rate and Turnover in the Murine Gastric Mucosa. Infection and Immunity, 2013, 81, 829-837.	2.2	68
42	The gastrointestinal mucus system in health and disease. Nature Reviews Gastroenterology and Hepatology, 2013, 10, 352-361.	17.8	1,026
43	Studies of mucus in mouse stomach, small intestine, and colon. II. Gastrointestinal mucus proteome reveals Muc2 and Muc5ac accompanied by a set of core proteins. American Journal of Physiology - Renal Physiology, 2013, 305, G348-G356.	3.4	114
44	Mucus and the Goblet Cell. Digestive Diseases, 2013, 31, 305-309.	1.9	89
45	NHE8 plays an important role in mucosal protection via its effect on bacterial adhesion. American Journal of Physiology - Cell Physiology, 2013, 305, C121-C128.	4.6	38
46	Studies of mucus in mouse stomach, small intestine, and colon. I. Gastrointestinal mucus layers have different properties depending on location as well as over the Peyer's patches. American Journal of Physiology - Renal Physiology, 2013, 305, G341-G347.	3.4	275
47	Altered Innate Defenses in the Neonatal Gastrointestinal Tract in Response to Colonization by Neuropathogenic Escherichia coli. Infection and Immunity, 2013, 81, 3264-3275.	2.2	40
48	The goblet cell: a key player in ischaemia-reperfusion injury. Gut, 2013, 62, 188-189.	12.1	21
49	Site-specific O-Glycosylation on the MUC2 Mucin Protein Inhibits Cleavage by the Porphyromonas gingivalis Secreted Cysteine Protease (RgpB). Journal of Biological Chemistry, 2013, 288, 14636-14646.	3.4	69
50	Calcium and pH-dependent packing and release of the gel-forming MUC2 mucin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 5645-5650.	7.1	265
51	Perspectives on Mucus Properties and FormationLessons from the Biochemical World. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a014159-a014159.	6.2	59
52	Preservation of Mucus in Histological Sections, Immunostaining of Mucins in Fixed Tissue, and Localization of Bacteria with FISH. Methods in Molecular Biology, 2012, 842, 229-235.	0.9	142
53	An ex vivo method for studying mucus formation, properties, and thickness in human colonic biopsies and mouse small and large intestinal explants. American Journal of Physiology - Renal Physiology, 2012, 302, G430-G438.	3.4	181
54	Transient Inability to Manage Proteobacteria Promotes Chronic Gut Inflammation in TLR5-Deficient Mice. Cell Host and Microbe, 2012, 12, 139-152.	11.0	459

MALIN E V JOHANSSON

#	Article	IF	CITATIONS
55	Proteomic Study of the Mucin Granulae in an Intestinal Goblet Cell Model. Journal of Proteome Research, 2012, 11, 1879-1890.	3.7	25
56	Fast Renewal of the Distal Colonic Mucus Layers by the Surface Goblet Cells as Measured by In Vivo Labeling of Mucin Glycoproteins. PLoS ONE, 2012, 7, e41009.	2.5	156
57	Bicarbonate and functional CFTR channel are required for proper mucin secretion and link cystic fibrosis with its mucus phenotype. Journal of Experimental Medicine, 2012, 209, 1263-1272.	8.5	292
58	Analysis of Assembly of Secreted Mucins. Methods in Molecular Biology, 2012, 842, 109-121.	0.9	14
59	Function of the CysD domain of the gel-forming MUC2 mucin. Biochemical Journal, 2011, 436, 61-70.	3.7	78
60	Keeping Bacteria at a Distance. Science, 2011, 334, 182-183.	12.6	89
61	Composition and functional role of the mucus layers in the intestine. Cellular and Molecular Life Sciences, 2011, 68, 3635-3641.	5.4	404
62	Altered O-glycosylation profile of MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation. Inflammatory Bowel Diseases, 2011, 17, 2299-2307.	1.9	243
63	The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host–microbial interactions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4659-4665.	7.1	1,084
64	Loss of intestinal core 1–derived O-glycans causes spontaneous colitis in mice. Journal of Clinical Investigation, 2011, 121, 1657-1666.	8.2	285
65	Lactobacillus and Bifidobacterium species do not secrete protease that cleaves the MUC2 mucin which organises the colon mucus. Beneficial Microbes, 2010, 1, 343-350.	2.4	27
66	Bacteria Penetrate the Inner Mucus Layer before Inflammation in the Dextran Sulfate Colitis Model. PLoS ONE, 2010, 5, e12238.	2.5	288
67	Proteomic Analyses of the Two Mucus Layers of the Colon Barrier Reveal That Their Main Component, the Muc2 Mucin, Is Strongly Bound to the Fcgbp Protein. Journal of Proteome Research, 2009, 8, 3549-3557.	3.7	188
68	The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15064-15069.	7.1	1,657
69	The gastric mucus layers: constituents and regulation of accumulation. American Journal of Physiology - Renal Physiology, 2008, 295, G806-G812.	3.4	88
70	Increased levels of mucins in the cystic fibrosis mouse small intestine, and modulator effects of the Muc1 mucin expression. American Journal of Physiology - Renal Physiology, 2006, 291, G203-G210.	3.4	53
71	Biosynthesis and Secretion of Mucins, Especially the MUC2 Mucin, in Relation to Cystic Fibrosis. Advances in Experimental Medicine and Biology, 2005, , 169-178.	1.6	1
72	An Autocatalytic Cleavage in the C Terminus of the Human MUC2 Mucin Occurs at the Low pH of the Late Secretory Pathway. Journal of Biological Chemistry, 2003, 278, 13944-13951.	3.4	80

#	Article	IF	CITATIONS
73	Novel MUC1 splice variants contribute to mucin overexpression in CFTR-deficient mice. American Journal of Physiology - Renal Physiology, 2003, 284, G853-G862.	3.4	24
74	The recombinant C-terminus of the human MUC2 mucin forms dimers in Chinese-hamster ovary cells and heterodimers with full-length MUC2 in LS 174T cells. Biochemical Journal, 2003, 372, 335-345.	3.7	57
75	The N Terminus of the MUC2 Mucin Forms Trimers That Are Held Together within a Trypsin-resistant Core Fragment. Journal of Biological Chemistry, 2002, 277, 47248-47256.	3.4	166
76	Blood Group A Glycosyltransferase Occurring as Alleles with High Sequence Difference Is Transiently Induced during aNippostrongylus brasiliensis Parasite Infection. Journal of Biological Chemistry, 2002, 277, 15044-15052.	3.4	23