Jordi Dachs

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4424622/jordi-dachs-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

168 8,555 86 56 h-index g-index citations papers 9,628 7.8 176 5.97 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
168	Climate change influence on the levels and trends of persistent organic pollutants (POPs) and chemicals of emerging Arctic concern (CEACs) in the Arctic physical environment - a review <i>Environmental Sciences: Processes and Impacts</i> , 2022 ,	4.3	3
167	Bacterial responses to background organic pollutants in the northeast subarctic Pacific Ocean. <i>Environmental Microbiology</i> , 2021 , 23, 4532-4546	5.2	0
166	Legacy and novel flame retardants from indoor dust in Antarctica: Sources and human exposure. <i>Environmental Research</i> , 2021 , 196, 110344	7.9	5
165	Responses of Coastal Marine Microbiomes Exposed to Anthropogenic Dissolved Organic Carbon. <i>Environmental Science & Dissolved Organic Carbon.</i>	10.3	6
164	Rain Amplification of Persistent Organic Pollutants. <i>Environmental Science & Environmental Science & </i>	10.3	3
163	Occurrence and air-water diffusive exchange legacy persistent organic pollutants in an oligotrophic north Patagonian lake. <i>Environmental Research</i> , 2021 , 204, 112042	7.9	1
162	Sources and diffusive air-water exchange of polycyclic aromatic hydrocarbons in an oligotrophic North-Patagonian lake. <i>Science of the Total Environment</i> , 2020 , 738, 139838	10.2	8
161	Anthropogenic dissolved organic carbon and marine microbiomes. <i>ISME Journal</i> , 2020 , 14, 2646-2648	11.9	16
160	Fate of Pyrethroids in Freshwater and Marine Environments. <i>Handbook of Environmental Chemistry</i> , 2020 , 81-107	0.8	O
159	Microbial responses to perfluoroalkyl substances and perfluorooctanesulfonate (PFOS) desulfurization in the Antarctic marine environment. <i>Water Research</i> , 2020 , 171, 115434	12.5	16
158	Large Enrichment of Anthropogenic Organic Matter Degrading Bacteria in the Sea-Surface Microlayer at Coastal Livingston Island (Antarctica). <i>Frontiers in Microbiology</i> , 2020 , 11, 571983	5.7	7
157	Enrichment of perfluoroalkyl substances in the sea-surface microlayer and sea-spray aerosols in the Southern Ocean. <i>Environmental Pollution</i> , 2020 , 267, 115512	9.3	17
156	Microbial consumption of organophosphate esters in seawater under phosphorus limited conditions. <i>Scientific Reports</i> , 2019 , 9, 233	4.9	28
155	Modulation of microbial growth and enzymatic activities in the marine environment due to exposure to organic contaminants of emerging concern and hydrocarbons. <i>Science of the Total Environment</i> , 2019 , 678, 486-498	10.2	15
154	Microbial responses to anthropogenic dissolved organic carbon in the Arctic and Antarctic coastal seawaters. <i>Environmental Microbiology</i> , 2019 , 21, 1466-1481	5.2	20
153	Vertical transport and sinks of perfluoroalkyl substances in the global open ocean. <i>Environmental Sciences: Processes and Impacts</i> , 2019 , 21, 1957-1969	4.3	13
152	Snow Amplification of Persistent Organic Pollutants at Coastal Antarctica. <i>Environmental Science</i> & Environmental Science & E	10.3	25

(2016-2019)

151	Biodegradation as an important sink of aromatic hydrocarbons in the oceans. <i>Nature Geoscience</i> , 2019 , 12, 119-125	18.3	64
150	Polychlorinated Biphenyls in the Global Ocean 2019 , 269-282		3
149	Persistent organic pollutants in krill from the Bellingshausen, South Scotia, and Weddell Seas. <i>Science of the Total Environment</i> , 2018 , 610-611, 1487-1495	10.2	7
148	Pivotal Role of Snow Deposition and Melting Driving Fluxes of Polycyclic Aromatic Hydrocarbons at Coastal Livingston Island (Antarctica). <i>Environmental Science & Environmental Science & Environment</i>	10.3	15
147	Seasonal soil/snow-air exchange of semivolatile organic pollutants at a coastal arctic site (Troms[] 69th). Science of the Total Environment, 2018 , 636, 1109-1116	10.2	24
146	Degradation of sulfonamides as a microbial resistance mechanism. Water Research, 2017, 115, 309-317	12.5	45
145	Accumulation of Perfluoroalkylated Substances in Oceanic Plankton. <i>Environmental Science & Environmental Science & Technology</i> , 2017 , 51, 2766-2775	10.3	49
144	Aliphatic hydrocarbons and triterpenes of the Congo deep-sea fan. <i>Deep-Sea Research Part II: Topical Studies in Oceanography</i> , 2017 , 142, 109-124	2.3	7
143	Effects of pre-exposure on the indigenous biodegradation of 14 C-phenanthrene in Antarctic soils. <i>International Biodeterioration and Biodegradation</i> , 2017 , 125, 189-199	4.8	2
142	Dysregulation of photosynthetic genes in oceanic Prochlorococcus populations exposed to organic pollutants. <i>Scientific Reports</i> , 2017 , 7, 8029	4.9	21
141	Long-range transport of airborne microbes over the global tropical and subtropical ocean. <i>Nature Communications</i> , 2017 , 8, 201	17.4	76
140	Role of Snow Deposition of Perfluoroalkylated Substances at Coastal Livingston Island (Maritime Antarctica). <i>Environmental Science & Environmental Sc</i>	10.3	49
139	Persistent organic pollutants in the atmosphere of the Antarctic Plateau. <i>Atmospheric Environment</i> , 2017 , 149, 104-108	5.3	12
138	Anthropogenic and biogenic hydrocarbons in soils and vegetation from the South Shetland Islands (Antarctica). <i>Science of the Total Environment</i> , 2016 , 569-570, 1500-1509	10.2	29
137	Organophosphate Ester Flame Retardants and Plasticizers in the Global Oceanic Atmosphere. <i>Environmental Science & Environmental Science & Environment</i>	10.3	78
136	Isotopic constraints on the role of hypohalous acids in sulfate aerosol formation in the remote marine boundary layer. <i>Atmospheric Chemistry and Physics</i> , 2016 , 16, 11433-11450	6.8	33
135	Air-Seawater Exchange of Organochlorine Pesticides in the Southern Ocean between Australia and Antarctica. <i>Environmental Science & Environmental Scie</i>	10.3	42
134	Toxicity assessment of atmospheric particulate matter in the Mediterranean and Black Seas open waters. <i>Science of the Total Environment</i> , 2016 , 545-546, 163-70	10.2	22

133	High atmospheredcean exchange of semivolatile aromatic hydrocarbons. <i>Nature Geoscience</i> , 2016 , 9, 438-442	18.3	79
132	Toxicity of natural mixtures of organic pollutants in temperate and polar marine phytoplankton. <i>Science of the Total Environment</i> , 2016 , 571, 34-41	10.2	26
131	Response to comments on "Unexpected occurrence of volatile dimethylsiloxanes in Antarctic soils, vegetation, phytoplankton and krill". <i>Environmental Science & Environmental </i>	10.3	6
130	Oceanic Sink and Biogeochemical Controls on the Accumulation of Polychlorinated Dibenzo-p-dioxins, Dibenzofurans, and Biphenyls in Plankton. <i>Environmental Science & Environmental Science & Environm</i>	10.3	15
129	Iodine oxide in the global marine boundary layer. Atmospheric Chemistry and Physics, 2015, 15, 583-593	6.8	62
128	Atmospheric Deposition of POPs. Comprehensive Analytical Chemistry, 2015, 295-322	1.9	12
127	Unexpected occurrence of volatile dimethylsiloxanes in Antarctic soils, vegetation, phytoplankton, and krill. <i>Environmental Science & Environmental S</i>	10.3	34
126	Celebrating Bidleman's 1988 "atmospheric processes". <i>Environmental Science & Environmental Science & </i>	10.3	2
125	Clade-Specific Quantitative Analysis of Photosynthetic Gene Expression in Prochlorococcus. <i>PLoS ONE</i> , 2015 , 10, e0133207	3.7	4
124	Out of Thin Air: Microbial Utilization of Atmospheric Gaseous Organics in the Surface Ocean. <i>Frontiers in Microbiology</i> , 2015 , 6, 1566	5.7	2
123	Sources and fate of polycyclic aromatic hydrocarbons in the Antarctic and Southern Ocean atmosphere. <i>Global Biogeochemical Cycles</i> , 2014 , 28, 1424-1436	5.9	41
122	Perfluoroalkylated substances in the global tropical and subtropical surface oceans. <i>Environmental Science & Environmental Sc</i>	10.3	73
121	Organophosphate ester (OPE) flame retardants and plasticizers in the open Mediterranean and Black Seas atmosphere. <i>Environmental Science & Environmental & Environmen</i>	10.3	107
120	Background concentrations of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in the global oceanic atmosphere. <i>Environmental Science & Environmental Science </i>	10.3	26
119	Field measurements of the atmospheric dry deposition fluxes and velocities of polycyclic aromatic hydrocarbons to the global oceans. <i>Environmental Science & Environmental Sc</i>	10.3	23
118	Atmospheric occurrence, transport and deposition of polychlorinated biphenyls and hexachlorobenzene in the Mediterranean and Black seas. <i>Atmospheric Chemistry and Physics</i> , 2014 , 14, 8947-8959	6.8	33
117	Diurnal Variability of Persistent Organic Pollutants in the Atmosphere over the Remote Southern Atlantic Ocean. <i>Atmosphere</i> , 2014 , 5, 622-634	2.7	1
116	Ocean日tmosphere exchange of organic carbon and CO₂ surrounding the Antarctic Peninsula. <i>Biogeosciences</i> , 2014 , 11, 2755-2770	4.6	15

115	Accumulation of dioxins in deep-sea crustaceans, fish and sediments from a submarine canyon (NW Mediterranean). <i>Progress in Oceanography</i> , 2013 , 118, 260-272	3.8	12
114	Atmospheric occurrence and deposition of hexachlorobenzene and hexachlorocyclohexanes in the Southern Ocean and Antarctic Peninsula. <i>Atmospheric Environment</i> , 2013 , 80, 41-49	5.3	51
113	Vertical eddy diffusion as a key mechanism for removing perfluorooctanoic acid (PFOA) from the global surface oceans. <i>Environmental Pollution</i> , 2013 , 179, 88-94	9.3	16
112	Climatic and biogeochemical controls on the remobilization and reservoirs of persistent organic pollutants in Antarctica. <i>Environmental Science & Environmental & Env</i>	10.3	72
111	The "degradative" and "biological" pumps controls on the atmospheric deposition and sequestration of hexachlorocyclohexanes and hexachlorobenzene in the North Atlantic and Arctic Oceans. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	43
110	Polychlorinated biphenyls, hexachlorocyclohexanes and hexachlorobenzene in seawater and phytoplankton from the Southern Ocean (Weddell, South Scotia, and Bellingshausen Seas). <i>Environmental Science & Description (Meddell, South Scotia)</i> 2013, 47, 5578-87	10.3	58
109	Soil-Air Exchange Controls on Background Atmospheric Concentrations of Polychlorinated Biphenyls (PCBs), Organochlorine Pesticides (OCPs), and Polycyclic Aromatic Hydrocarbons (PAHs): A Case Study from Temperate Regions. <i>ACS Symposium Series</i> , 2013 , 19-38	0.4	1
108	Sources, Transport and Deposition of Atmospheric Organic Pollutants in the Mediterranean Sea. <i>ACS Symposium Series</i> , 2013 , 231-260	0.4	6
107	Factors affecting the atmospheric occurrence and deposition of polychlorinated biphenyls in the Southern Ocean. <i>Atmospheric Chemistry and Physics</i> , 2013 , 13, 12029-12041	6.8	38
106	Atmospheric Transport, Cycling and Dynamics of Polychlorinated Biphenyls (PCBs) from Source	0.4	9
	Regions to Remote Oceanic Areas. ACS Symposium Series, 2013 , 3-18	· 4	
105	Polycyclic aromatic hydrocarbons (PAHs) in the Mediterranean Sea: atmospheric occurrence, deposition and decoupling with settling fluxes in the water column. <i>Environmental Pollution</i> , 2012 , 166, 40-7	9.3	103
105	Polycyclic aromatic hydrocarbons (PAHs) in the Mediterranean Sea: atmospheric occurrence, deposition and decoupling with settling fluxes in the water column. <i>Environmental Pollution</i> , 2012 ,		
	Polycyclic aromatic hydrocarbons (PAHs) in the Mediterranean Sea: atmospheric occurrence, deposition and decoupling with settling fluxes in the water column. <i>Environmental Pollution</i> , 2012 , 166, 40-7 Transference of atmospheric hydroxyl radical to the ocean surface induces high phytoplankton cell	9.3	103
104	Polycyclic aromatic hydrocarbons (PAHs) in the Mediterranean Sea: atmospheric occurrence, deposition and decoupling with settling fluxes in the water column. <i>Environmental Pollution</i> , 2012 , 166, 40-7 Transference of atmospheric hydroxyl radical to the ocean surface induces high phytoplankton cell death. <i>Photochemistry and Photobiology</i> , 2012 , 88, 1473-9 Biological pump control of the fate and distribution of hydrophobic organic pollutants in water and	9.3	103
104	Polycyclic aromatic hydrocarbons (PAHs) in the Mediterranean Sea: atmospheric occurrence, deposition and decoupling with settling fluxes in the water column. <i>Environmental Pollution</i> , 2012 , 166, 40-7 Transference of atmospheric hydroxyl radical to the ocean surface induces high phytoplankton cell death. <i>Photochemistry and Photobiology</i> , 2012 , 88, 1473-9 Biological pump control of the fate and distribution of hydrophobic organic pollutants in water and plankton. <i>Environmental Science & amp; Technology</i> , 2012 , 46, 3204-11 Influence of organic matter content and human activities on the occurrence of organic pollutants in	9·3 3.6 10·3	103395
104	Polycyclic aromatic hydrocarbons (PAHs) in the Mediterranean Sea: atmospheric occurrence, deposition and decoupling with settling fluxes in the water column. <i>Environmental Pollution</i> , 2012 , 166, 40-7 Transference of atmospheric hydroxyl radical to the ocean surface induces high phytoplankton cell death. <i>Photochemistry and Photobiology</i> , 2012 , 88, 1473-9 Biological pump control of the fate and distribution of hydrophobic organic pollutants in water and plankton. <i>Environmental Science & Camp; Technology</i> , 2012 , 46, 3204-11 Influence of organic matter content and human activities on the occurrence of organic pollutants in antarctic soils, lichens, grass, and mosses. <i>Environmental Science & Camp; Technology</i> , 2012 , 46, 1396-405 Re-examination of global emerging patterns of ocean DMS concentration. <i>Biogeochemistry</i> , 2012 ,	9.3 3.6 10.3	103395119
104 103 102	Polycyclic aromatic hydrocarbons (PAHs) in the Mediterranean Sea: atmospheric occurrence, deposition and decoupling with settling fluxes in the water column. <i>Environmental Pollution</i> , 2012 , 166, 40-7 Transference of atmospheric hydroxyl radical to the ocean surface induces high phytoplankton cell death. <i>Photochemistry and Photobiology</i> , 2012 , 88, 1473-9 Biological pump control of the fate and distribution of hydrophobic organic pollutants in water and plankton. <i>Environmental Science & December</i> , <i>Technology</i> , 2012 , 46, 3204-11 Influence of organic matter content and human activities on the occurrence of organic pollutants in antarctic soils, lichens, grass, and mosses. <i>Environmental Science & December Science & D</i>	9.3 3.6 10.3 3.8	103 3 95 119 27

97	The riverine inputButput paradox for organic pollutants. <i>Frontiers in Ecology and the Environment</i> , 2012 , 10, 405-406	5.5	7
96	Biodegradation of phenanthrene by indigenous microorganisms in soils from Livingstone Island, Antarctica. <i>FEMS Microbiology Letters</i> , 2012 , 329, 69-77	2.9	23
95	Potential for a biogenic influence on cloud microphysics over the ocean: a correlation study with satellite-derived data. <i>Atmospheric Chemistry and Physics</i> , 2012 , 12, 7977-7993	6.8	40
94	Volatile per- and polyfluoroalkyl compounds in the remote atmosphere of the western Antarctic Peninsula: an indirect source of perfluoroalkyl acids to Antarctic waters?. <i>Atmospheric Pollution Research</i> , 2012 , 3, 450-455	4.5	43
93	Biogeochemical and physical controls on concentrations of polycyclic aromatic hydrocarbons in water and plankton of the Mediterranean and Black Seas. <i>Global Biogeochemical Cycles</i> , 2011 , 25, n/a-n/	,5 .9	97
92	Soil-Air exchange controls on background atmospheric concentrations of organochlorine pesticides. <i>Atmospheric Chemistry and Physics</i> , 2011 , 11, 12799-12811	6.8	57
91	Marine ecosystems[responses to climatic and anthropogenic forcings in the Mediterranean. <i>Progress in Oceanography</i> , 2011 , 91, 97-166	3.8	277
90	Cell size dependence of additive versus synergetic effects of UV radiation and PAHs on oceanic phytoplankton. <i>Environmental Pollution</i> , 2011 , 159, 1307-16	9.3	37
89	Ubiquitous net volatilization of polycyclic aromatic hydrocarbons from soils and parameters influencing their soil-air partitioning. <i>Environmental Science & Environmental Sc</i>	10.3	88
88	Persistent organic pollutants in Mediterranean seawater and processes affecting their accumulation in plankton. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	93
87	Factors influencing the soil-air partitioning and the strength of soils as a secondary source of polychlorinated biphenyls to the atmosphere. <i>Environmental Science & Environmental Science & Environ</i>	9 ^{10.3}	71
86	Novel system for controlled investigation of environmental partitioning of hydrophobic compounds in water. <i>Environmental Science & Environmental & Environmen</i>	10.3	4
85	Sources, Transport and Fate of Organic Pollutants in the Oceanic Environment 2011 , 111-139		6
84	Atlantic ocean surface waters buffer declining atmospheric concentrations of persistent organic pollutants. <i>Environmental Science & Environmental Sci</i>	10.3	56
83	Atmospheric occurrence and deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in the open Mediterranean Sea. <i>Environmental Science & Environmental S</i>	10.3	43
82	Field-derived Henry's law constants for polychlorinated biphenyls in oceanic waters. <i>Journal of Geophysical Research</i> , 2010 , 115,		5
81	Past, present, and future controls on levels of persistent organic pollutants in the global environment. <i>Environmental Science & Environmental Scienc</i>	10.3	181
80	Air-water exchange and vertical profiles of organic carbon in a subarctic fjord. <i>Limnology and Oceanography</i> , 2010 , 55, 1733-1740	4.8	18

(2007-2010)

79	Organic Pollutants in Coastal Waters, Sediments, and Biota: A Relevant Driver for Ecosystems During the Anthropocene?. <i>Estuaries and Coasts</i> , 2010 , 33, 1-14	2.8	73
78	Cell size dependent toxicity thresholds of polycyclic aromatic hydrocarbons to natural and cultured phytoplankton populations. <i>Environmental Pollution</i> , 2010 , 158, 299-307	9.3	88
77	Decrease in the abundance and viability of oceanic phytoplankton due to trace levels of complex mixtures of organic pollutants. <i>Chemosphere</i> , 2010 , 81, 161-8	8.4	68
76	Deposition of Dissolved and Particulate-Bound Chemicals from the Surface Ocean 2010 , 495-512		
75	Integrated modelling of Polycyclic Aromatic Hydrocarbons in the marine environment: coupling of hydrodynamic, fate and transport, bioaccumulation and planktonic food-web models. <i>Marine Pollution Bulletin</i> , 2009 , 58, 1554-61	6.7	18
74	Seasonal fluxes and temperature-dependent accumulation of persistent organic pollutants in lakes: the role of internal biogeochemical cycling. <i>Environmental Pollution</i> , 2009 , 157, 1815-22	9.3	19
73	Development of a soil fugacity sampler for determination of air-soil partitioning of persistent organic pollutants under field controlled conditions. <i>Environmental Science & Environmental &</i>	10.3	55
72	Surface waters are a source of polychlorinated biphenyls to the coastal atmosphere of the North-Western Mediterranean Sea. <i>Chemosphere</i> , 2009 , 75, 1144-52	8.4	38
71	Accumulation and cycling of polycyclic aromatic hydrocarbons in zooplankton. <i>Environmental Science & Environmental Science & </i>	10.3	115
70	Atmospheric deposition of organic and black carbon to the global oceans. <i>Atmospheric Environment</i> , 2008 , 42, 7931-7939	5.3	180
69	PAHs in air and seawater along a North-South Atlantic transect: trends, processes and possible sources. <i>Environmental Science & Environmental Science</i>	10.3	135
68	Polychlorinated biphenyls in air and water of the North Atlantic and Arctic Ocean. <i>Journal of Geophysical Research</i> , 2008 , 113,		74
67	Seasonal air-water exchange fluxes of polychlorinated biphenyls in the Hudson River Estuary. <i>Environmental Pollution</i> , 2008 , 152, 443-51	9.3	35
66	Seasonality in the grasshopping atmospheric residence times of persistent organic pollutants over the oceans. <i>Geophysical Research Letters</i> , 2008 , 35,	4.9	39
65	Clustering of nonpolar organic compounds in lipid media: evidence and implications. <i>Journal of Physical Chemistry A</i> , 2008 , 112, 11699-703	2.8	10
64	Polychlorinated biphenyls (PCBs) in air and seawater of the Atlantic Ocean: sources, trends and processes. <i>Environmental Science & Environmental Scie</i>	10.3	103
63	Atmospheric occurrence and deposition of polycyclic aromatic hydrocarbons in the northeast tropical and subtropical Atlantic Ocean. <i>Environmental Science & Environmental Sci</i>	10.3	53
62	Influence of the surface microlayer on atmospheric deposition of aerosols and polycyclic aromatic hydrocarbons. <i>Atmospheric Environment</i> , 2007 , 41, 4920-4930	5.3	29

61	Fate of persistent organic pollutants in the water column: does turbulent mixing matter?. <i>Marine Pollution Bulletin</i> , 2007 , 54, 441-51	6.7	50
60	Global fate of POPs: current and future research directions. <i>Environmental Pollution</i> , 2007 , 150, 150-65	9.3	399
59	Quantifying the importance of the atmospheric sink for polychlorinated dioxins and furans relative to other global loss processes. <i>Journal of Geophysical Research</i> , 2006 , 111,		11
58	Aerosol inputs enhance new production in the subtropical northeast Atlantic. <i>Journal of Geophysical Research</i> , 2006 , 111,		65
57	Oceanic deep water formation as a sink of persistent organic pollutants. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	63
56	Modelling the dynamic air-water-sediment coupled fluxes and occurrence of polychlorinated biphenyls in a high altitude lake. <i>Environmental Pollution</i> , 2006 , 140, 546-60	9.3	38
55	Effects of dust deposition and river discharges on trace metal composition of Trichodesmium spp. in the tropical and subtropical North Atlantic Ocean. <i>Limnology and Oceanography</i> , 2006 , 51, 1755-1761	4.8	36
54	Atmospheric concentrations and deposition of polycyclic aromatic hydrocarbons to the Mid-Atlantic East Coast region. <i>Environmental Science & East Coast Region (2005)</i> , 39, 5550-9	10.3	77
53	Comparison of sampling devices for the determination of polychlorinated biphenyls in the sea surface microlayer. <i>Marine Environmental Research</i> , 2005 , 59, 255-75	3.3	25
52	Wet deposition of persistent organic pollutants to the global oceans. <i>Environmental Science & Environmental Science & Technology</i> , 2005 , 39, 2426-35	10.3	112
51	High atmosphere-ocean exchange of organic carbon in the NE subtropical Atlantic. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	48
50	Enrichment of organochlorine contaminants in the sea surface microlayer: An organic carbon-driven process. <i>Marine Chemistry</i> , 2005 , 96, 331-345	3.7	40
49	Evaluation of sampling devices for the determination of polycyclic aromatic hydrocarbons in surface microlayer coastal waters. <i>Marine Pollution Bulletin</i> , 2004 , 48, 961-8	6.7	25
48	Evidence for dynamic air-water coupling and cycling of persistent organic pollutants over the open Atlantic Ocean. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	107
47	Atmospheric concentrations and deposition of polychorinated biphenyls to the Hudson River Estuary. <i>Environmental Science & Estuary</i> , 2004, 38, 2568-73	10.3	66
46	Response to the Comment on Influence of Soot Carbon on the SoilAir Partitioning of Polycyclic Aromatic Hydrocarbons [Environmental Science & Amp; Technology, 2004, 38, 1624-1625]	10.3	21
45	Potential contamination of shipboard air samples by diffusive emissions of PCBs and other organic pollutants: implications and solutions. <i>Environmental Science & Environmental Science & Environment</i>	10.3	46
44	Maximum reservoir capacity of vegetation for persistent organic pollutants: Implications for global cycling. <i>Global Biogeochemical Cycles</i> , 2004 , 18, n/a-n/a	5.9	35

(2000-2004)

43	Atmospheric dry deposition of persistent organic pollutants to the Atlantic and inferences for the global oceans. <i>Environmental Science & Environmental Science & Environment</i>	10.3	119
42	Latitudinal and seasonal capacity of the surface oceans as a reservoir of polychlorinated biphenyls. <i>Environmental Pollution</i> , 2004 , 128, 149-62	9.3	52
41	Processes controlling diurnal variations of PCDD/Fs in the New Jersey coastal atmosphere. <i>Atmospheric Environment</i> , 2003 , 37, 959-969	5.3	26
40	Sea breeze modulated volatilization of polycyclic aromatic hydrocarbons from the Masnou Harbor (NW Mediterranean Sea). <i>Environmental Science & Environmental Science & Enviro</i>	10.3	25
39	Influence of soot carbon on the soil-air partitioning of polycyclic aromatic hydrocarbons. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	83
38	Processes driving the short-term variability of polycyclic aromatic hydrocarbons in the Baltimore and northern Chesapeake Bay atmosphere, USA. <i>Atmospheric Environment</i> , 2002 , 36, 2281-2295	5.3	58
37	AirWater exchange of polycyclic aromatic hydrocarbons in the New YorkNew Jersey, USA, Harbor Estuary. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 235-244	3.8	77
36	Prediction of uptake dynamics of persistent organic pollutants by bacteria and phytoplankton. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 2099-2107	3.8	89
35	Conformational Entropy Drives Slow Sorption of Organic Chemicals into Fractal Sorbents. <i>Langmuir</i> , 2002 , 18, 7089-7091	4	
	Oceanic biogeochemical controls on global dynamics of persistent organic pollutants.		
34	Environmental Science & Enviro	10.3	300
33		5.9	300 148
	Environmental Science & Description of dimethylsulfide predicted from biogeophysical data. Global		
33	Environmental Science & Description of dimethylsulfide predicted from biogeophysical data. Global Biogeochemical Cycles, 2002, 16, 26-1-26-10 Air-water exchange of polycyclic aromatic hydrocarbons in the New York-New Jersey, USA, Harbor	5.9	148
33	Global ocean emission of dimethylsulfide predicted from biogeophysical data. <i>Global Biogeochemical Cycles</i> , 2002 , 16, 26-1-26-10 Air-water exchange of polycyclic aromatic hydrocarbons in the New York-New Jersey, USA, Harbor Estuary. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 235-44 Prediction of uptake dynamics of persistent organic pollutants by bacteria and phytoplankton.	5.9 3.8	148 63
33 32 31	Global ocean emission of dimethylsulfide predicted from biogeophysical data. <i>Global Biogeochemical Cycles</i> , 2002, 16, 26-1-26-10 Air-water exchange of polycyclic aromatic hydrocarbons in the New York-New Jersey, USA, Harbor Estuary. <i>Environmental Toxicology and Chemistry</i> , 2002, 21, 235-44 Prediction of uptake dynamics of persistent organic pollutants by bacteria and phytoplankton. <i>Environmental Toxicology and Chemistry</i> , 2002, 21, 2099-107 Atmospheric polychlorinated biphenyl concentrations and apparent degradation in coastal New	5.9 3.8 3.8	148 63 10
33 32 31 30	Global ocean emission of dimethylsulfide predicted from biogeophysical data. Global Biogeochemical Cycles, 2002, 16, 26-1-26-10 Air-water exchange of polycyclic aromatic hydrocarbons in the New York-New Jersey, USA, Harbor Estuary. Environmental Toxicology and Chemistry, 2002, 21, 235-44 Prediction of uptake dynamics of persistent organic pollutants by bacteria and phytoplankton. Environmental Toxicology and Chemistry, 2002, 21, 2099-107 Atmospheric polychlorinated biphenyl concentrations and apparent degradation in coastal New Jersey. Atmospheric Environment, 2001, 35, 3325-3339 Polychlorinated biphenyls and particulate organic/elemental carbon in the atmosphere of	5.9 3.8 3.8	148631075
33 32 31 30 29	Global ocean emission of dimethylsulfide predicted from biogeophysical data. <i>Global Biogeochemical Cycles</i> , 2002 , 16, 26-1-26-10 Air-water exchange of polycyclic aromatic hydrocarbons in the New York-New Jersey, USA, Harbor Estuary. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 235-44 Prediction of uptake dynamics of persistent organic pollutants by bacteria and phytoplankton. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 2099-107 Atmospheric polychlorinated biphenyl concentrations and apparent degradation in coastal New Jersey. <i>Atmospheric Environment</i> , 2001 , 35, 3325-3339 Polychlorinated biphenyls and particulate organic/elemental carbon in the atmosphere of Chesapeake Bay, USA. <i>Atmospheric Environment</i> , 2001 , 35, 5663-5677 Dynamic air-water exchange of polychlorinated biphenyls in the New York-New Jersey Harbor	5.9 3.8 3.8 5.3 5.3	1486310754493

25	Influence of Eutrophication on Air Water Exchange, Vertical Fluxes, and Phytoplankton Concentrations of Persistent Organic Pollutants. <i>Environmental Science & Environmental </i>	10.3	120
24	Polycyclic Aromatic Hydrocarbons in the New Jersey Coastal Atmosphere. <i>Environmental Science</i> & Environmental Science & Environmental Science & Environmental Science	10.3	91
23	Adsorption onto Aerosol Soot Carbon Dominates Gas-Particle Partitioning of Polycyclic Aromatic Hydrocarbons. <i>Environmental Science & Environmental Sc</i>	10.3	302
22	Atmospheric Seasonal Trends and Environmental Fate of Alkylphenols in the Lower Hudson River Estuary. <i>Environmental Science & Estuary</i> , 2000, 34, 2410-2417	10.3	84
21	Evaluation of anthropogenic and biogenic inputs into the western Mediterranean using molecular markers. <i>Marine Chemistry</i> , 1999 , 65, 195-210	3.7	38
20	Coupling of Phytoplankton Uptake and AirWater Exchange of Persistent Organic Pollutants. <i>Environmental Science & Description (Marchael Science & Description </i>	10.3	136
19	Occurrence of Estrogenic Nonylphenols in the Urban and Coastal Atmosphere of the Lower Hudson River Estuary. <i>Environmental Science & Environmental Sc</i>	10.3	106
18	Monsoon-Driven Vertical Fluxes of Organic Pollutants in the Western Arabian Sea. <i>Environmental Science & Environmental & Environmenta</i>	10.3	38
17	Trialkylamines and Coprostanol as Tracers of Urban Pollution in Waters from Enclosed Seas: The Mediterranean and Black Sea. <i>Environmental Science & Environmental Science & E</i>	10.3	22
16	Effects of Adsorbate/Adsorbate Interactions and Surface Fractality on Diffusion- and Reaction-Limited Adsorption. <i>Langmuir</i> , 1999 , 15, 8686-8690	4	6
15	Evidence for cyanobacterial inputs and heterotrophic alteration of lipids in sinking particles in the Alboran Sea (SW Mediterranean). <i>Marine Chemistry</i> , 1998 , 60, 189-201	3.7	29
14	On the occurrence of microscale chemical patches in fractal aggregates. <i>Ecological Modelling</i> , 1998 , 107, 87-92	3	6
13	Langmuir-Derived Model for Diffusion- and Reaction-Limited Adsorption of Organic Compounds on Fractal Aggregates. <i>Environmental Science & Environmental Science & Environment</i>	10.3	20
12	Spatial, Vertical Distribution and Budget of Polycyclic Aromatic Hydrocarbons in the Western Mediterranean Seawater. <i>Environmental Science & Environmental Science & Environm</i>	10.3	104
11	Mass budget and dynamics of polycyclic aromatic hydrocarbons in the Mediterranean Sea. <i>Deep-Sea Research Part II: Topical Studies in Oceanography</i> , 1997 , 44, 881-905	2.3	127
10	PCBs in the western Mediterranean. Temporal trends and mass balance assessment. <i>Deep-Sea Research Part II: Topical Studies in Oceanography</i> , 1997 , 44, 907-928	2.3	68
9	Spatial distribution, vertical profiles and budget of organochlorine compounds in Western Mediterranean seawater. <i>Marine Chemistry</i> , 1997 , 57, 313-324	3.7	47

LIST OF PUBLICATIONS

7	Flicker Noise in Vertical Fluxes of Particle-Associated Contaminants in the Marine Environment. <i>Environmental Science & Environmental Science & Envir</i>	10.3	2	
6	Vertical fluxes of polycyclic aromatic hydrocarbons and organochlorine compounds in the western Alboran Sea (southwestern Mediterranean). <i>Marine Chemistry</i> , 1996 , 52, 75-86	3.7	92	
5	Development of a supercritical fluid extraction procedure for tributyltin determination in sediments. <i>Analytica Chimica Acta</i> , 1994 , 286, 319-327	6.6	43	
4	Optimization of a flame photometric detector for supercritical fluid chromatography of organotin compounds. <i>Journal of Chromatography A</i> , 1993 , 636, 277-283	4.5	15	
3	Tributyltin speciation in aquatic matrices by CGC-FPD and CGC-MS confirmation. <i>Mikrochimica Acta</i> , 1992 , 109, 87-91	5.8	15	
2	Dissolved Black Carbon and Semivolatile Aromatic Hydrocarbons in the Ocean: Two Entangled Biogeochemical Cycles?. <i>Environmental Science and Technology Letters</i> ,	11	2	
1	Organophosphate ester pollution in the oceans. Nature Reviews Earth & Environment,	30.2	4	