
Saurabh Nene

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4424272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of plasticity-induced martensitic transformation and grain refinement on the evolution of microstructure and mechanical properties of a metastable high entropy alloy. Journal of Alloys and Compounds, 2022, 891, 161871.	2.8	13
2	Role of Cu addition in enhancing strength-ductility synergy in transforming high entropy alloy. Materials and Design, 2022, 215, 110487.	3.3	16
3	Microstructure–Property Correlation in a Laser Powder Bed Fusion Processed Highâ€Strength AFâ€9628 Steel. Advanced Engineering Materials, 2021, 23, .	1.6	7
4	Some Unique Aspects of Mechanical Behavior of Metastable Transformative High Entropy Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 889-896.	1.1	17
5	Direct evidence of the stacking fault-mediated strain hardening phenomenon. Applied Physics Letters, 2021, 119, .	1.5	18
6	Friction stir processing of a high entropy alloy Fe42Co10Cr15Mn28Si5 with transformative characteristics: Microstructure and mechanical properties. Materials Today Communications, 2021, 28, 102635.	0.9	4
7	Segregation engineering of grain boundaries of a metastable Fe-Mn-Co-Cr-Si high entropy alloy with laser-powder bed fusion additive manufacturing. Acta Materialia, 2021, 219, 117271.	3.8	67
8	Friction stir welding of Î ³ -fcc dominated metastable high entropy alloy: Microstructural evolution and strength. Scripta Materialia, 2021, 204, 114161.	2.6	20
9	Superplasticity in fine grained dual phase high entropy alloy. Materialia, 2020, 9, 100521.	1.3	20
10	Investigating the deformation mechanisms of a highly metastable high entropy alloy using in-situ neutron diffraction. Materials Today Communications, 2020, 23, 100858.	0.9	18
11	Deformation mechanisms and ductile fracture characteristics of a friction stir processed transformative high entropy alloy. Acta Materialia, 2020, 184, 164-178.	3.8	30
12	Damage-tolerant, corrosion-resistant high entropy alloy with high strength and ductility by laser powder bed fusion additive manufacturing. Additive Manufacturing, 2020, 36, 101455.	1.7	17
13	Effect of Strain Rate on Deformation Response of Metastable High Entropy Alloys Upon Friction Stir Processing. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 5043-5048.	1.1	5
14	Correlating work hardening with co-activation of stacking fault strengthening and transformation in a high entropy alloy using in-situ neutron diffraction. Scientific Reports, 2020, 10, 22263.	1.6	17
15	Metastability driven hierarchical microstructural engineering: Overview of mechanical properties of metastable complex concentrated alloys. Journal of Alloys and Compounds, 2020, 842, 155625.	2.8	24
16	Excellent strength-ductility synergy in metastable high entropy alloy by laser powder bed additive manufacturing. Additive Manufacturing, 2020, 32, 101098.	1.7	29
17	Friction stir butt welding of a high strength Al-7050 alloy with a metastable transformative high entropy alloy. Materialia, 2020, 11, 100740.	1.3	13
18	On the evolving nature of c/a ratio in a hexagonal close-packed epsilon martensite phase in transformative high entropy alloys. Scientific Reports, 2019, 9, 13185.	1.6	40

Saurabh Nene

#	Article	IF	CITATIONS
19	Nanoindentation behavior of high entropy alloys with transformation-induced plasticity. Scientific Reports, 2019, 9, 6639.	1.6	41
20	Extremely high fatigue resistance in an ultrafine grained high entropy alloy. Applied Materials Today, 2019, 15, 525-530.	2.3	61
21	Revealing the microstructural evolution in a high entropy alloy enabled with transformation, twinning and precipitation. Materialia, 2019, 6, 100310.	1.3	16
22	Microstructural Evolution and Deformation Behavior of Ni-Si- and Co-Si-Containing Metastable High Entropy Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 179-190.	1.1	10
23	Metastability-assisted fatigue behavior in a friction stir processed dual-phase high entropy alloy. Materials Research Letters, 2018, 6, 613-619.	4.1	54
24	Unexpected strength–ductility response in an annealed, metastable, high-entropy alloy. Applied Materials Today, 2018, 13, 198-206.	2.3	50
25	Friction stir processing of newly-designed Mg-5Al-3.5Ca-1Mn (AXM541) alloy: Microstructure evolution and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 729, 294-299.	2.6	15
26	Towards attaining dissimilar lap joint of CuCrZr alloy and 316L stainless steel using friction stir welding. Science and Technology of Welding and Joining, 2018, 23, 715-720.	1.5	15
27	Extremely high strength and work hardening ability in a metastable high entropy alloy. Scientific Reports, 2018, 8, 9920.	1.6	96
28	Towards Obtaining Sound Butt Joint Between Metallurgically Immiscible Pure Cu and Stainless Steel Through Friction Stir Welding. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 2578-2582.	1.1	30
29	Enhanced strength and ductility in a friction stir processing engineered dual phase high entropy alloy. Scientific Reports, 2017, 7, 16167.	1.6	127
30	Towards microstructure-cytocompatibility relationship in ultralight Mg-4Li-1Ca (LX41) alloy for degradable implant applications. BioNanoMaterials, 2016, 17, .	1.4	2
31	Biocorrosion and biodegradation behavior of ultralight Mg–4Li–1Ca (LC41) alloy in simulated body fluid for degradable implant applications. Journal of Materials Science, 2015, 50, 3041-3050.	1.7	27
32	Microstructure refinement and its effect on specific strength and bio-corrosion resistance in ultralight Mg–4Li–1Ca (LC41) alloy by hot rolling. Journal of Alloys and Compounds, 2014, 615, 501-506.	2.8	68
33	Microstructural evolution in and flow properties of Zr–2.5Nb pressure tube material at elevated temperature. Journal of Nuclear Materials, 2014, 449, 62-68.	1.3	5
34	Effect of Rolling on Microstructure and Room Temperature Tensile Properties of Newly Developed Mg-4Li-1Ca Alloy. Advanced Materials Research, 0, 922, 537-542.	0.3	4