Elsa - Sanchez-Lopez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4424159/publications.pdf Version: 2024-02-01

FISA - SANCHEZ-LODEZ

#	Article	IF	CITATIONS
1	Epigenetic Regulation of Nutrient Transporters in Rheumatoid Arthritis Fibroblastâ€Like Synoviocytes. Arthritis and Rheumatology, 2022, , .	2.9	10
2	Synovial inflammation in osteoarthritis progression. Nature Reviews Rheumatology, 2022, 18, 258-275.	3.5	243
3	Monosodium urate crystals regulate a unique JNK-dependent macrophage metabolic and inflammatory response. Cell Reports, 2022, 38, 110489.	2.9	20
4	Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity, 2022, 55, 1370-1385.e8.	6.6	158
5	Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity, 2021, 54, 1463-1477.e11.	6.6	179
6	Autophagy-mitophagy induction attenuates cardiovascular inflammation in a murine model of Kawasaki disease vasculitis. JCI Insight, 2021, 6, .	2.3	23
7	Hypoxia-Inducible Factor-1α: The Master Regulator of Endothelial Cell Senescence in Vascular Aging. Cells, 2020, 9, 195.	1.8	47
8	NF-κB-p62-NRF2 survival signaling is associated with high ROR1 expression in chronic lymphocytic leukemia. Cell Death and Differentiation, 2020, 27, 2206-2216.	5.0	30
9	Fibroblast-Like Synoviocytes Glucose Metabolism as a Therapeutic Target in Rheumatoid Arthritis. Frontiers in Immunology, 2019, 10, 1743.	2.2	77
10	Cirmtuzumab blocks Wnt5a/ROR1 stimulation of NF-κB to repress autocrine STAT3 activation in chronic lymphocytic leukemia. Blood, 2019, 134, 1084-1094.	0.6	38
11	Can Metabolic Pathways Be Therapeutic Targets in Rheumatoid Arthritis?. Journal of Clinical Medicine, 2019, 8, 753.	1.0	32
12	Choline Uptake and Metabolism Modulate Macrophage IL-1β and IL-18 Production. Cell Metabolism, 2019, 29, 1350-1362.e7.	7.2	140
13	Hexokinase 2 as a novel selective metabolic target for rheumatoid arthritis. Annals of the Rheumatic Diseases, 2018, 77, 1636-1643.	0.5	123
14	New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature, 2018, 560, 198-203.	13.7	722
15	Cirmtuzumab Blocks Production of Proinflammatory Factors By Inhibiting Wnt5a/ROR1 Induced Activation of NF-Kappa B in Chronic Lymphocytic Leukemia. Blood, 2018, 132, 4415-4415.	0.6	0
16	Activation of NF-Kappa B-p62-NRF2 Signaling Supports the Survival of CLL Cells That Express High Levels of ROR1. Blood, 2018, 132, 3122-3122.	0.6	0
17	Differential effect of quercetin on cisplatin-induced toxicity in kidney and tumor tissues. Food and Chemical Toxicology, 2017, 107, 226-236.	1.8	63
18	Autophagy, Inflammation, and Immunity: A Troika Governing Cancer and Its Treatment. Cell, 2016, 166, 288-298	13.5	508

Elsa - Sanchez-Lopez

#	Article	IF	CITATIONS
19	NF-κB Restricts Inflammasome Activation via Elimination of Damaged Mitochondria. Cell, 2016, 164, 896-910.	13.5	859
20	Targeting colorectal cancer via its microenvironment by inhibiting IGF-1 receptor-insulin receptor substrate and STAT3 signaling. Oncogene, 2016, 35, 2634-2644.	2.6	120
21	Autophagy, NLRP3 inflammasome and auto-inflammatory/immune diseases. Clinical and Experimental Rheumatology, 2016, 34, 12-6.	0.4	72
22	Immunosuppressive plasma cells impede T-cell-dependent immunogenic chemotherapy. Nature, 2015, 521, 94-98.	13.7	451
23	Angiotensin II, via angiotensin receptor type 1/nuclear factor-κB activation, causes a synergistic effect on interleukin-1-Î2-induced inflammatory responses in cultured mesangial cells. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2015, 16, 23-32.	1.0	23
24	Choline kinase inhibition in rheumatoid arthritis. Annals of the Rheumatic Diseases, 2015, 74, 1399-1407.	0.5	64
25	Integrin-linked kinase plays a key role in the regulation of angiotensin II-induced renal inflammation. Clinical Science, 2014, 127, 19-31.	1.8	39
26	Interleukin-17 Receptor A Signaling in Transformed Enterocytes Promotes Early Colorectal Tumorigenesis. Immunity, 2014, 41, 1052-1063.	6.6	265
27	The C-terminal module IV of connective tissue growth factor is a novel immune modulator of the Th17 response. Laboratory Investigation, 2013, 93, 812-824.	1.7	42
28	Choline kinase inhibition induces exacerbated endoplasmic reticulum stress and triggers apoptosis via CHOP in cancer cells. Cell Death and Disease, 2013, 4, e933-e933.	2.7	63
29	HSP27/HSPB1 as an adaptive podocyte antiapoptotic protein activated by high glucose and angiotensin II. Laboratory Investigation, 2012, 92, 32-45.	1.7	55
30	Lights and shadows of proteomic technologies for the study of protein species including isoforms, splicing variants and protein postâ€ŧranslational modifications. Proteomics, 2011, 11, 590-603.	1.3	19
31	Abstract 2644: Inhibition of choline kinase increases endoplasmic reticulum stress proteins. , 2011, , .		0
32	CTGF Promotes Inflammatory Cell Infiltration of the Renal Interstitium by Activating NF-κB. Journal of the American Society of Nephrology: JASN, 2009, 20, 1513-1526.	3.0	110
33	Pharmacological Modulation of Epithelial Mesenchymal Transition Caused by Angiotensin II. Role of ROCK and MAPK Pathways. Pharmaceutical Research, 2008, 25, 2447-2461.	1.7	64
34	Inhibitory effect of interleukin-1β on angiotensin II-induced connective tissue growth factor and type IV collagen production in cultured mesangial cells. American Journal of Physiology - Renal Physiology, 2008, 294, F149-F160.	1.3	47
35	Angiotensin II activates the Smad pathway during epithelial mesenchymal transdifferentiation. Kidney International, 2008, 74, 585-595.	2.6	110
36	Essential Role of TGF-β/Smad Pathway on Statin Dependent Vascular Smooth Muscle Cell Regulation. PLoS ONE, 2008, 3, e3959.	1.1	49

Elsa - Sanchez-Lopez

#	Article	IF	CITATIONS
37	TGF-β signaling in vascular fibrosis. Cardiovascular Research, 2007, 74, 196-206.	1.8	446
38	HMC-CoA Reductase Inhibitors Decrease Angiotensin II–Induced Vascular Fibrosis. Hypertension, 2007, 50, 377-383.	1.3	97
39	Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrology Dialysis Transplantation, 2006, 21, 16-20.	0.4	291
40	Renal and vascular hypertension-induced inflammation: role of angiotensin II. Current Opinion in Nephrology and Hypertension, 2006, 15, 159-166.	1.0	132
41	The Rho-kinase pathway regulates angiotensin II-induced renal damage. Kidney International, 2005, 68, S39-S45.	2.6	47
42	Angiotensin II Regulates Vascular Endothelial Growth Factor via Hypoxia-Inducible Factor-1α Induction and Redox Mechanisms in the Kidney. Antioxidants and Redox Signaling, 2005, 7, 1275-1284.	2.5	50
43	Endothelin-1, via ETAReceptor and Independently of Transforming Growth Factor-β, Increases the Connective Tissue Growth Factor in Vascular Smooth Muscle Cells. Circulation Research, 2005, 97, 125-134.	2.0	108
44	Angiotensin II Activates the Smad Pathway in Vascular Smooth Muscle Cells by a Transforming Growth Factor-β–Independent Mechanism. Circulation, 2005, 111, 2509-2517.	1.6	303
45	Angiotensin IV Activates the Nuclear Transcription Factor-κB and Related Proinflammatory Genes in Vascular Smooth Muscle Cells. Circulation Research, 2005, 96, 965-973.	2.0	97
46	INTERLEUKIN-1BETA INHIBITS CONNECTIVE TISSUE GROWTH FACTOR AND FIBRONECTIN PRODUCTION CAUSED BY ANGIOTENSIN II IN MESANGIAL CELLS. Journal of Hypertension, 2004, 22, S42-S43.	0.3	0
47	ANGIOTENSIN II ACTIVATES THE SMAD SIGNALLING PATHWAY. Journal of Hypertension, 2004, 22, S351-S352.	0.3	1
48	RHOA/RHO-KINASE PATHWAY REGULATES ANGIOTENSIN II-INDUCED CONNECTIVE TISSUE GROWTH FACTOR. POTENTIAL MECHANISMS OF STATINS ON ANGII-INDUCED VASCULAR DAMAGE. Journal of Hypertension, 2004, 22, S40.	0.3	0
49	Modulation of Angiotensin II Effects, A Potential Novel Approach to Inflammatory and Immune Diseases. Current Medicinal Chemistry Anti-inflammatory & Anti-allergy Agents, 2003, 2, 379-394. 	0.4	9
50	Monosodium Urate Crystals Regulate a Unique JNK-Dependent Macrophage Metabolic and Inflammatory Response. SSRN Electronic Journal, 0, , .	0.4	0