

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4423931/publications.pdf Version: 2024-02-01

LINI XIE

#	Article	IF	CITATIONS
1	A Successive Conversion–Deintercalation Delithiation Mechanism for Practical Composite Lithium Anodes. Journal of the American Chemical Society, 2022, 144, 212-218.	6.6	66
2	An Ultrathin Functional Layer Based on Porous Organic Cages for Selective Ion Sieving and Lithium–Sulfur Batteries. Nano Letters, 2022, 22, 2030-2037.	4.5	20
3	Modification of Nitrate Ion Enables Stable Solid Electrolyte Interphase in Lithium Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	96
4	Modification of Nitrate Ion Enables Stable Solid Electrolyte Interphase in Lithium Metal Batteries. Angewandte Chemie, 2022, 134, .	1.6	9
5	Fluorinating the Solid Electrolyte Interphase by Rational Molecular Design for Practical Lithiumâ€Metal Batteries. Angewandte Chemie, 2022, 134, .	1.6	10
6	Fluorinating the Solid Electrolyte Interphase by Rational Molecular Design for Practical Lithiumâ€Metal Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	68
7	Nonâ€Solvating and Lowâ€Dielectricity Cosolvent for Anionâ€Derived Solid Electrolyte Interphases in Lithium Metal Batteries. Angewandte Chemie, 2021, 133, 11543-11548.	1.6	19
8	Nonâ€Solvating and Lowâ€Dielectricity Cosolvent for Anionâ€Derived Solid Electrolyte Interphases in Lithium Metal Batteries. Angewandte Chemie - International Edition, 2021, 60, 11442-11447.	7.2	169
9	A Supramolecular Electrolyte for Lithiumâ€Metal Batteries. Batteries and Supercaps, 2020, 3, 47-51.	2.4	17
10	A Supramolecular Electrolyte for Lithiumâ€Metal Batteries. Batteries and Supercaps, 2020, 3, 5-5.	2.4	0
11	Direct Intermediate Regulation Enabled by Sulfur Containers in Working Lithium–Sulfur Batteries. Angewandte Chemie, 2020, 132, 22334-22339.	1.6	9
12	Direct Intermediate Regulation Enabled by Sulfur Containers in Working Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2020, 59, 22150-22155.	7.2	55
13	Rücktitelbild: Electrochemical Phase Evolution of Metalâ€Based Preâ€Catalysts for Highâ€Rate Polysulfide Conversion (Angew. Chem. 23/2020). Angewandte Chemie, 2020, 132, 9278-9278.	1.6	1
14	Electrochemical Phase Evolution of Metalâ€Based Pre atalysts for Highâ€Rate Polysulfide Conversion. Angewandte Chemie - International Edition, 2020, 59, 9011-9017.	7.2	164
15	Electrochemical Phase Evolution of Metalâ€Based Pre atalysts for Highâ€Rate Polysulfide Conversion. Angewandte Chemie, 2020, 132, 9096-9102.	1.6	42
16	Spatial and Kinetic Regulation of Sulfur Electrochemistry on Semiâ€Immobilized Redox Mediators in Working Batteries. Angewandte Chemie - International Edition, 2020, 59, 17670-17675.	7.2	54
17	Spatial and Kinetic Regulation of Sulfur Electrochemistry on Semiâ€Immobilized Redox Mediators in Working Batteries. Angewandte Chemie, 2020, 132, 17823-17828.	1.6	5
18	Polyoxovanadate-polymer hybrid electrolyte in solid state batteries. Energy Storage Materials, 2020, 29, 172-181.	9.5	39

Jin Xie

#	Article	IF	CITATIONS
19	Implanting Atomic Cobalt within Mesoporous Carbon toward Highly Stable Lithium–Sulfur Batteries. Advanced Materials, 2019, 31, e1903813.	11.1	310
20	Fast galvanic lithium corrosion involving a Kirkendall-type mechanism. Nature Chemistry, 2019, 11, 382-389.	6.6	180
21	Graphene-based Fe-coordinated framework porphyrin as an interlayer for lithium–sulfur batteries. Materials Chemistry Frontiers, 2019, 3, 615-619.	3.2	47
22	From Supramolecular Species to Selfâ€Templated Porous Carbon and Metalâ€Doped Carbon for Oxygen Reduction Reaction Catalysts. Angewandte Chemie, 2019, 131, 5017-5021.	1.6	7
23	From Supramolecular Species to Selfâ€Templated Porous Carbon and Metalâ€Doped Carbon for Oxygen Reduction Reaction Catalysts. Angewandte Chemie - International Edition, 2019, 58, 4963-4967.	7.2	59
24	Wrinkled Graphene Cages as Hosts for High-Capacity Li Metal Anodes Shown by Cryogenic Electron Microscopy. Nano Letters, 2019, 19, 1326-1335.	4.5	193
25	Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nature Nanotechnology, 2019, 14, 705-711.	15.6	773
26	Direct/Alternating Current Electrochemical Method for Removing and Recovering Heavy Metal from Water Using Graphene Oxide Electrode. ACS Nano, 2019, 13, 6431-6437.	7.3	181
27	Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries. Nature Communications, 2019, 10, 2067.	5.8	177
28	Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode. Advanced Energy Materials, 2019, 9, 1900858.	10.2	333
29	Amidoxime-Functionalized Macroporous Carbon Self-Refreshed Electrode Materials for Rapid and High-Capacity Removal of Heavy Metal from Water. ACS Central Science, 2019, 5, 719-726.	5.3	76
30	Composite lithium electrode with mesoscale skeleton via simple mechanical deformation. Science Advances, 2019, 5, eaau5655.	4.7	79
31	An Interconnected Channelâ€Like Framework as Host for Lithium Metal Composite Anodes. Advanced Energy Materials, 2019, 9, 1802720.	10.2	83
32	Innentitelbild: Activating Inert Metallic Compounds for Highâ€Rate Lithium–Sulfur Batteries Through In Situ Etching of Extrinsic Metal (Angew. Chem. 12/2019). Angewandte Chemie, 2019, 131, 3692-3692.	1.6	1
33	Conductive and Catalytic Tripleâ€Phase Interfaces Enabling Uniform Nucleation in Highâ€Rate Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1802768.	10.2	508
34	Activating Inert Metallic Compounds for Highâ€Rate Lithium–Sulfur Batteries Through In Situ Etching of Extrinsic Metal. Angewandte Chemie - International Edition, 2019, 58, 3779-3783.	7.2	296
35	Activating Inert Metallic Compounds for Highâ€Rate Lithium–Sulfur Batteries Through In Situ Etching of Extrinsic Metal. Angewandte Chemie, 2019, 131, 3819-3823.	1.6	41
36	Porphyrinâ€Derived Grapheneâ€Based Nanosheets Enabling Strong Polysulfide Chemisorption and Rapid Kinetics in Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1800849.	10.2	211

Jin Xie

#	Article	IF	CITATIONS
37	In Situ Investigation on the Nanoscale Capture and Evolution of Aerosols on Nanofibers. Nano Letters, 2018, 18, 1130-1138.	4.5	65
38	Vertically Aligned and Continuous Nanoscale Ceramic–Polymer Interfaces in Composite Solid Polymer Electrolytes for Enhanced Ionic Conductivity. Nano Letters, 2018, 18, 3829-3838.	4.5	268
39	A Bifunctional Perovskite Promoter for Polysulfide Regulation toward Stable Lithium–Sulfur Batteries. Advanced Materials, 2018, 30, 1705219.	11.1	276
40	Solventâ€Engineered Scalable Production of Polysulfideâ€Blocking Shields to Enhance Practical Lithium–Sulfur Batteries. Small Methods, 2018, 2, 1800100.	4.6	23
41	Lithium metal stripping beneath the solid electrolyte interphase. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8529-8534.	3.3	150
42	Engineering stable interfaces for three-dimensional lithium metal anodes. Science Advances, 2018, 4, eaat5168.	4.7	153
43	Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%. Energy and Environmental Science, 2017, 10, 580-592.	15.6	421
44	A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nature Energy, 2017, 2, .	19.8	388
45	Beaver-dam-like membrane: A robust and sulphifilic MgBO2(OH)/CNT/PP nest separator in Li-S batteries. Energy Storage Materials, 2017, 8, 153-160.	9.5	86
46	An Artificial Solid Electrolyte Interphase with High Liâ€Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes. Advanced Materials, 2017, 29, 1605531.	11.1	747
47	Strong texturing of lithium metal in batteries. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12138-12143.	3.3	188
48	Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability. Journal of the American Chemical Society, 2017, 139, 11550-11558.	6.6	398
49	Engineering the surface of LiCoO2 electrodes using atomic layer deposition for stable high-voltage lithium ion batteries. Nano Research, 2017, 10, 3754-3764.	5.8	78
50	Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode. Science Advances, 2017, 3, eaao3170.	4.7	252
51	A dual-mode textile for human body radiative heating and cooling. Science Advances, 2017, 3, e1700895.	4.7	399
52	A Supramolecular Capsule for Reversible Polysulfide Storage/Delivery in Lithium‣ulfur Batteries. Angewandte Chemie - International Edition, 2017, 56, 16223-16227.	7.2	85
53	A Supramolecular Capsule for Reversible Polysulfide Storage/Delivery in Lithium‣ulfur Batteries. Angewandte Chemie, 2017, 129, 16441-16445.	1.6	19
54	Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes. Nature Nanotechnology, 2017, 12, 993-999.	15.6	376

Jin Xie

#	Article	IF	CITATIONS
55	A Prussian blue route to nitrogen-doped graphene aerogels as efficient electrocatalysts for oxygen reduction with enhanced active site accessibility. Nano Research, 2017, 10, 1213-1222.	5.8	73
56	Innenrücktitelbild: A Supramolecular Capsule for Reversible Polysulfide Storage/Delivery in Lithium‣ulfur Batteries (Angew. Chem. 51/2017). Angewandte Chemie, 2017, 129, 16635-16635.	1.6	0
57	Radiative human body cooling by nanoporous polyethylene textile. Science, 2016, 353, 1019-1023.	6.0	764
58	A Cooperative Interface for Highly Efficient Lithium–Sulfur Batteries. Advanced Materials, 2016, 28, 9551-9558.	11.1	514
59	Lithiumâ€Sulfur Batteries: A Cooperative Interface for Highly Efficient Lithium–Sulfur Batteries (Adv.) Tj ETQq1	1 0.78431 11.1	.4 ₃ rgBT /Ov∈
60	Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nature Nanotechnology, 2016, 11, 626-632.	15.6	1,557
61	One-pot synthesis of triazine-framework derived catalysts with high performance for polymer electrolyte membrane fuel cells. RSC Advances, 2016, 6, 21617-21623.	1.7	2
62	Make best use of social networks via more valuable friend recommendations. , 2012, , .		6
63	Polysulfide Electrocatalysis on Framework Porphyrin in High-Capacity and High-Stable Lithium–Sulfur Batteries. CCS Chemistry, 0, , 128-137.	4.6	131