
Hai Rao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4423665/publications.pdf Version: 2024-02-01

ΗΛΙ ΡΛΟ

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Degradation of a cohesin subunit by the N-end rule pathway is essential for chromosome stability. Nature, 2001, 410, 955-959.	27.8	264
3	Recognition of Specific Ubiquitin Conjugates Is Important for the Proteolytic Functions of the Ubiquitin-associated Domain Proteins Dsk2 and Rad23. Journal of Biological Chemistry, 2002, 277, 11691-11695.	3.4	182
4	Multiple Interactions of Rad23 Suggest a Mechanism for Ubiquitylated Substrate Delivery Important in Proteolysis. Molecular Biology of the Cell, 2004, 15, 3357-3365.	2.1	145
5	Ubiquitylation of p62/sequestosome1 activates its autophagy receptor function and controls selective autophagy upon ubiquitin stress. Cell Research, 2017, 27, 657-674.	12.0	143
6	The Png1–Rad23 complex regulates glycoprotein turnover. Journal of Cell Biology, 2006, 172, 211-219.	5.2	117
7	Proteasome inhibition in wild-type yeast <i>Saccharomyces cerevisiae</i> cells. BioTechniques, 2007, 42, 158-162.	1.8	102
8	Cdc48: A Swiss Army Knife of Cell Biology. Journal of Amino Acids, 2013, 2013, 1-12.	5.8	79
9	Down-Regulation of Gli Transcription Factor Leads to the Inhibition of Migration and Invasion of Ovarian Cancer Cells via Integrin β4-Mediated FAK Signaling. PLoS ONE, 2014, 9, e88386.	2.5	70
10	The Cdc48 ATPase modulates the interaction between two proteolytic factors Ufd2 and Rad23. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13558-13563.	7.1	60
11	Cellular tolerance of prion protein PrP in yeast involves proteolysis and the unfolded protein response. Biochemical and Biophysical Research Communications, 2006, 347, 319-326.	2.1	42
12	Identification of an Htm1 (EDEM)-dependent, Mns1-independent Endoplasmic Reticulum-associated Degradation (ERAD) Pathway in Saccharomyces cerevisiae. Journal of Biological Chemistry, 2010, 285, 24324-24334.	3.4	38
13	Arl13b Promotes Gastric Tumorigenesis by Regulating Smo Trafficking and Activation of the Hedgehog Signaling Pathway. Cancer Research, 2017, 77, 4000-4013.	0.9	33
14	Multiple E3s promote the degradation of histone H3 variant Cse4. Scientific Reports, 2017, 7, 8565.	3.3	33
15	A genome-wide synthetic dosage lethality screen reveals multiple pathways that require the functioning of ubiquitin-binding proteins Rad23 and Dsk2. BMC Biology, 2009, 7, 75.	3.8	30
16	The F-box Protein Rcy1 Is Involved in the Degradation of Histone H3 Variant Cse4 and Genome Maintenance. Journal of Biological Chemistry, 2016, 291, 10372-10377.	3.4	28
17	Heat shock protein 90l ² stabilizes focal adhesion kinase and enhances cell migration and invasion in breast cancer cells. Experimental Cell Research, 2014, 326, 78-89.	2.6	26
18	Ubiquitin Ligase Ufd2 Is Required for Efficient Degradation of Mps1 Kinase. Journal of Biological Chemistry, 2011, 286, 43660-43667.	3.4	22

Hai Rao

#	Article	IF	CITATIONS
19	A modular PROTAC design for target destruction using a degradation signal based on a single amino acid. Journal of Biological Chemistry, 2019, 294, 15172-15175.	3.4	21
20	Ubiquitin Chain Elongation Enzyme Ufd2 Regulates a Subset of Doa10 Substrates. Journal of Biological Chemistry, 2010, 285, 10265-10272.	3.4	20
21	XPC promotes MDM2-mediated degradation of the p53 tumor suppressor. Molecular Biology of the Cell, 2014, 25, 213-221.	2.1	20
22	What's Ub Chain Linkage Got to Do with It?. Science Signaling, 2006, 2006, pe18-pe18.	3.6	19
23	Rad4 Regulates Protein Turnover at a Postubiquitylation Step. Molecular Biology of the Cell, 2010, 21, 177-185.	2.1	17
24	Inhibition of Hedgehog signaling pathway impedes cancer cell proliferation by promotion of autophagy. European Journal of Cell Biology, 2015, 94, 223-233.	3.6	17
25	Autophagy regulator Atg9 is degraded by the proteasome. Biochemical and Biophysical Research Communications, 2020, 522, 254-258.	2.1	16
26	A newly identified Pirh2 substrate SCYL1â€BP1 can bind to MDM2 and accelerate MDM2 selfâ€ubiquitination. FEBS Letters, 2010, 584, 3275-3278.	2.8	15
27	Nek2A phosphorylates and stabilizes SuFu: A new strategy of Gli2/Hedgehog signaling regulatory mechanism. Cellular Signalling, 2016, 28, 1304-1313.	3.6	15
28	Nek2A/SuFu feedback loop regulates Gli-mediated Hedgehog signaling pathway. International Journal of Oncology, 2017, 50, 373-380.	3.3	15
29	The Cdc48 Protein and Its Cofactor Vms1 Are Involved in Cdc13 Protein Degradation. Journal of Biological Chemistry, 2012, 287, 26788-26795.	3.4	14
30	Ubiquitin Ligase gp78 Targets Unglycosylated Prion Protein PrP for Ubiquitylation and Degradation. PLoS ONE, 2014, 9, e92290.	2.5	14
31	Overexpression of SCYL1â€BP1 stabilizes functional p53 by suppressing MDM2â€mediated ubiquitination. FEBS Letters, 2010, 584, 4319-4324.	2.8	13
32	Usa1 Protein Facilitates Substrate Ubiquitylation through Two Separate Domains. PLoS ONE, 2009, 4, e7604.	2.5	13
33	Synthesis and characterization of a 29-amino acid residue DNA-binding peptide derived from α/β-type small, acid-soluble spore proteins (SASP) of bacteria. FEBS Letters, 1992, 305, 115-120.	2.8	9
34	A Simple PCR-based Strategy for the Introduction of Point Mutations in the Yeast Saccharomyces cerevisiae via CRISPR/Cas9. Biochemistry & Molecular Biology Journal, 2018, 04, .	0.3	9
35	Positive feedback of SuFu negating protein 1 on Hedgehog signaling promotes colorectal tumor growth. Cell Death and Disease, 2021, 12, 199.	6.3	7
36	Genome-wide approaches to systematically identify substrates of the ubiquitin–proteasome pathway. Trends in Biotechnology, 2010, 28, 461-467.	9.3	5

Hai Rao

#	Article	IF	CITATIONS
37	Rad25 Protein Is Targeted for Degradation by the Ubc4-Ufd4 Pathway. Journal of Biological Chemistry, 2015, 290, 8606-8612.	3.4	4
38	The N-terminal domain of the non-receptor tyrosine kinase ABL confers protein instability and suppresses tumorigenesis. Journal of Biological Chemistry, 2020, 295, 9069-9075.	3.4	4
39	Analysis of Ubiquitin Chainâ€Binding Proteins by Twoâ€Hybrid Methods. Methods in Enzymology, 2005, 399, 157-164.	1.0	1