Xiao-chen Bai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4423362/publications.pdf Version: 2024-02-01

XIAO-CHEN RAL

#	Article	IF	CITATIONS
1	Synergistic activation of the insulin receptor via two distinct sites. Nature Structural and Molecular Biology, 2022, 29, 357-368.	3.6	36
2	Activation of STING by targeting a pocket in the transmembrane domain. Nature, 2022, 604, 557-562.	13.7	71
3	Molecular mechanism of the wake-promoting agent TAK-925. Nature Communications, 2022, 13, .	5.8	12
4	SNARE assembly enlightened by cryo-EM structures of a synaptobrevin–Munc18-1–syntaxin-1 complex. Science Advances, 2022, 8, .	4.7	40
5	Cryo-electron Microscopic Analysis of Single-Pass Transmembrane Receptors. Chemical Reviews, 2022, 122, 13952-13988.	23.0	7
6	Cryo-EM structure of the Hippo signaling integrator human STRIPAK. Nature Structural and Molecular Biology, 2021, 28, 290-299.	3.6	36
7	Seeing Atoms by Single-Particle Cryo-EM. Trends in Biochemical Sciences, 2021, 46, 253-254.	3.7	16
8	Architecture of the Sema3A/PlexinA4/Neuropilin tripartite complex. Nature Communications, 2021, 12, 3172.	5.8	24
9	Scap structures highlight key role for rotation of intertwined luminal loops in cholesterol sensing. Cell, 2021, 184, 3689-3701.e22.	13.5	18
10	Structural basis of the activation of c-MET receptor. Nature Communications, 2021, 12, 4074.	5.8	64
11	Characterization of the subunit composition and structure of adult human glycine receptors. Neuron, 2021, 109, 2707-2716.e6.	3.8	32
12	A structural model of a Ras–Raf signalosome. Nature Structural and Molecular Biology, 2021, 28, 847-857.	3.6	44
13	Structures and Mechanisms in the cGAS-STING Innate Immunity Pathway. Immunity, 2020, 53, 43-53.	6.6	325
14	Structural and Mechanistic Regulation of the Pro-degenerative NAD Hydrolase SARM1. Cell Reports, 2020, 32, 107999.	2.9	94
15	Cryo-EM structure of the human cohesin-NIPBL-DNA complex. Science, 2020, 368, 1454-1459.	6.0	171
16	Structure of a D2 dopamine receptor–G-protein complex in a lipid membrane. Nature, 2020, 584, 125-129.	13.7	128
17	Cryo-EM structure of the PlexinC1/A39R complex reveals inter-domain interactions critical for ligand-induced activation. Nature Communications, 2020, 11, 1953.	5.8	13
18	Cryo-EM structures of human ZnT8 in both outward- and inward-facing conformations. ELife, 2020, 9, .	2.8	46

XIAO-CHEN BAI

#	Article	IF	CITATIONS
19	Structural insights into the Ca2+-dependent gating of the human mitochondrial calcium uniporter. ELife, 2020, 9, .	2.8	34
20	Structural basis of the activation of type 1 insulin-like growth factor receptor. Nature Communications, 2019, 10, 4567.	5.8	117
21	Cryo-EM structures of the human cation-chloride cotransporter KCC1. Science, 2019, 366, 505-508.	6.0	61
22	Structural Mechanism of EMRE-Dependent Gating of the Human Mitochondrial Calcium Uniporter. Cell, 2019, 177, 1252-1261.e13.	13.5	108
23	Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP–AMP. Nature, 2019, 567, 389-393.	13.7	392
24	Structural basis of STING binding with and phosphorylation by TBK1. Nature, 2019, 567, 394-398.	13.7	540
25	Structural mechanisms of phospholipid activation of the human TPC2 channel. ELife, 2019, 8, .	2.8	103
26	Structural and functional characterization of an otopetrin family proton channel. ELife, 2019, 8, .	2.8	20
27	Cryo-EM analyses reveal the common mechanism and diversification in the activation of RET by different ligands. ELife, 2019, 8, .	2.8	37
28	Activation mechanism of the insulin receptor revealed by cryo-EM structure of the fully liganded receptor–ligand complex. ELife, 2019, 8, .	2.8	123
29	Structural insights into the voltage and phospholipid activation of the mammalian TPC1 channel. Nature, 2018, 556, 130-134.	13.7	153
30	Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein. ELife, 2018, 7, .	2.8	219
31	Cryo-EM structure of a fungal mitochondrial calcium uniporter. Nature, 2018, 559, 570-574.	13.7	125
32	Mechanistic insights into caspase-9 activation by the structure of the apoptosome holoenzyme. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1542-1547.	3.3	95
33	Structure of a spliceosome remodelled for exon ligation. Nature, 2017, 542, 377-380.	13.7	160
34	Cryo-EM structure of a metazoan separase–securin complex at near-atomic resolution. Nature Structural and Molecular Biology, 2017, 24, 414-418.	3.6	65
35	Structure of the MacAB–TolC ABC-type tripartite multidrug efflux pump. Nature Microbiology, 2017, 2, 17070.	5.9	140
36	Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. Nature Microbiology, 2017, 2, 17031.	5.9	128

XIAO-CHEN BAI

#	Article	IF	CITATIONS
37	Structure of mammalian endolysosomal TRPML1 channel in nanodiscs. Nature, 2017, 550, 415-418.	13.7	244
38	Structures of the human mitochondrial ribosome in native states of assembly. Nature Structural and Molecular Biology, 2017, 24, 866-869.	3.6	140
39	Structures of the calcium-activated, non-selective cation channel TRPM4. Nature, 2017, 552, 205-209.	13.7	158
40	ECâ€01â€02: Structure of î"‣ecretases and Implications for Drug Development. Alzheimer's and Dementia, 2016, 12, P161.	0.4	0
41	The Central domain of RyR1 is the transducer for long-range allosteric gating of channel opening. Cell Research, 2016, 26, 995-1006.	5.7	93
42	The Sac3 TPR-like region in the Saccharomyces cerevisiae TREX-2 complex is more extensive but independent of the CID region. Journal of Structural Biology, 2016, 195, 316-324.	1.3	3
43	Design of a molecular support for cryo-EM structure determination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7456-E7463.	3.3	93
44	Cryo-EM structure of the yeast U4/U6.U5 tri-snRNP at 3.7 Ã resolution. Nature, 2016, 530, 298-302.	13.7	184
45	Sampling the conformational space of the catalytic subunit of human \hat{I}^3 -secretase. ELife, 2015, 4, .	2.8	556
46	Structure of the apoptosome: mechanistic insights into activation of an initiator caspase from <i>Drosophila</i> . Genes and Development, 2015, 29, 277-287.	2.7	55
47	The architecture of the spliceosomal U4/U6.U5 tri-snRNP. Nature, 2015, 523, 47-52.	13.7	195
48	An atomic structure of human \hat{l}^3 -secretase. Nature, 2015, 525, 212-217.	13.7	490
49	Atomic structure of the apoptosome: mechanism of cytochrome <i>c</i> - and dATP-mediated activation of Apaf-1. Genes and Development, 2015, 29, 2349-2361.	2.7	201
50	Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution. Nature, 2015, 517, 50-55.	13.7	391
51	How cryo-EM is revolutionizing structural biology. Trends in Biochemical Sciences, 2015, 40, 49-57.	3.7	709
52	Structure of the Yeast Mitochondrial Large Ribosomal Subunit. Science, 2014, 343, 1485-1489.	6.0	521
53	Initiation of Translation by Cricket Paralysis Virus IRES Requires Its Translocation in the Ribosome. Cell, 2014, 157, 823-831.	13.5	211
54	Structure of the large ribosomal subunit from human mitochondria. Science, 2014, 346, 718-722.	6.0	260

XIAO-CHEN BAI

#	Article	IF	CITATIONS
55	Three-dimensional structure of human γ-secretase. Nature, 2014, 512, 166-170.	13.7	317
56	Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine. ELife, 2014, 3, .	2.8	274
57	Structure of the Yeast Mitochondrial Large Ribosomal Subunit. Microscopy and Microanalysis, 2014, 20, 1252-1253.	0.2	1
58	Molecular Architecture of a Eukaryotic Translational Initiation Complex. Science, 2013, 342, 1240585.	6.0	120
59	Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. ELife, 2013, 2, e00461.	2.8	378
60	Cryo-EM structure of a 3D DNA-origami object. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20012-20017.	3.3	219
61	Structural characterization of full-length NSF and 20S particles. Nature Structural and Molecular Biology, 2012, 19, 268-275.	3.6	46
62	Characterization of the Structure and Function of Escherichia coli DegQ as a Representative of the DegQ-like Proteases of Bacterial HtrA Family Proteins. Structure, 2011, 19, 1328-1337.	1.6	37
63	Two types of oligomeric structures of DegP in protein quality control. FASEB Journal, 2011, 25, 905.5.	0.2	0
64	Cellular Internalization of Exosomes Occurs Through Phagocytosis. Traffic, 2010, 11, 675-687.	1.3	757
65	Bowl-shaped oligomeric structures on membranes as DegP's new functional forms in protein quality control. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4858-4863.	3.3	64
66	Overexpression of complexin in PC12 cells inhibits exocytosis by preventing SNARE complex recycling. Biochemistry (Moscow), 2007, 72, 439-444.	0.7	11