
Robert A Burne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4423088/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oral Biofilms: Pathogens, Matrix, and Polymicrobial Interactions in Microenvironments. Trends in Microbiology, 2018, 26, 229-242.	7.7	600
2	Role of the Streptococcus mutans gtf genes in caries induction in the specific-pathogen-free rat model. Infection and Immunity, 1993, 61, 3811-3817.	2.2	369
3	Impact of engineered surface microtopography on biofilm formation of <i>Staphylococcus aureus</i> . Biointerphases, 2007, 2, 89-94.	1.6	358
4	Alkali production by oral bacteria and protection against dental caries. FEMS Microbiology Letters, 2000, 193, 1-6.	1.8	341
5	Bacterial ureases in infectious diseases. Microbes and Infection, 2000, 2, 533-542.	1.9	305
6	A model of efficiency: stress tolerance by Streptococcus mutans. Microbiology (United Kingdom), 2008, 154, 3247-3255.	1.8	261
7	Streptococcus mutans Extracellular DNA Is Upregulated during Growth in Biofilms, Actively Released via Membrane Vesicles, and Influenced by Components of the Protein Secretion Machinery. Journal of Bacteriology, 2014, 196, 2355-2366.	2.2	249
8	Oral Streptococci Products of Their Environment. Journal of Dental Research, 1998, 77, 445-452.	5.2	228
9	Functional Genomics Approach to Identifying Genes Required for Biofilm Development by <i>Streptococcus mutans</i> . Applied and Environmental Microbiology, 2002, 68, 1196-1203.	3.1	217
10	LuxS-Mediated Signaling in <i>Streptococcus mutans</i> Is Involved in Regulation of Acid and Oxidative Stress Tolerance and Biofilm Formation. Journal of Bacteriology, 2004, 186, 2682-2691.	2.2	212
11	Multilevel Control of Competence Development and Stress Tolerance in <i>Streptococcus mutans</i> UA159. Infection and Immunity, 2006, 74, 1631-1642.	2.2	181
12	CcpA Regulates Central Metabolism and Virulence Gene Expression in <i>Streptococcus mutans</i> . Journal of Bacteriology, 2008, 190, 2340-2349.	2.2	174
13	Evolutionary and Population Genomics of the Cavity Causing Bacteria Streptococcus mutans. Molecular Biology and Evolution, 2013, 30, 881-893.	8.9	168
14	Correlations of oral bacterial arginine and urea catabolism with caries experience. Oral Microbiology and Immunology, 2009, 24, 89-95.	2.8	167
15	Phylogenomics and the Dynamic Genome Evolution of the Genus Streptococcus. Genome Biology and Evolution, 2014, 6, 741-753.	2.5	149
16	Responses of cariogenic streptococci to environmental stresses. Current Issues in Molecular Biology, 2005, 7, 95-107.	2.4	148
17	Progress toward understanding the contribution of alkali generation in dental biofilms to inhibition of dental caries. International Journal of Oral Science, 2012, 4, 135-140.	8.6	147
18	Three gene products govern (p)ppGpp production by <i>Streptococcus mutans</i> . Molecular Microbiology, 2007, 65, 1568-1581.	2.5	146

#	Article	IF	CITATIONS
19	Different Roles of EIIAB ^{Man} and EII ^{Clc} in Regulation of Energy Metabolism, Biofilm Development, and Competence in <i>Streptococcus mutans</i> . Journal of Bacteriology, 2006, 188, 3748-3756.	2.2	145
20	The Collagen-Binding Protein Cnm Is Required for Streptococcus mutans Adherence to and Intracellular Invasion of Human Coronary Artery Endothelial Cells. Infection and Immunity, 2011, 79, 2277-2284.	2.2	144
21	Effects of RelA on Key Virulence Properties of Planktonic and Biofilm Populations of <i>Streptococcus mutans</i> . Infection and Immunity, 2004, 72, 1431-1440.	2.2	143
22	Biofilm formation and virulence expression by Streptococcus mutans are altered when grown in dual-species model. BMC Microbiology, 2010, 10, 111.	3.3	143
23	Microbiomes of Site-Specific Dental Plaques from Children with Different Caries Status. Infection and Immunity, 2017, 85, .	2.2	141
24	Characteristics of Biofilm Formation by <i>Streptococcus mutans</i> in the Presence of Saliva. Infection and Immunity, 2008, 76, 4259-4268.	2.2	131
25	Fueling the caries process: carbohydrate metabolism and gene regulation by <i>Streptococcus mutans</i> . Journal of Oral Microbiology, 2014, 6, 24878.	2.7	126
26	Regulation and Physiologic Significance of the Agmatine Deiminase System of Streptococcus mutans UA159. Journal of Bacteriology, 2006, 188, 834-841.	2.2	124
27	Regulation of Expression of the Fructan Hydrolase Gene of <i>Streptococcus mutans</i> GS-5 by Induction and Carbon Catabolite Repression. Journal of Bacteriology, 1999, 181, 2863-2871.	2.2	124
28	Expression, purification, and characterization of an exo-beta-D-fructosidase of Streptococcus mutans. Journal of Bacteriology, 1987, 169, 4507-4517.	2.2	123
29	Influence of BrpA on Critical Virulence Attributes of <i>Streptococcus mutans</i> . Journal of Bacteriology, 2006, 188, 2983-2992.	2.2	120
30	Effects of Oxygen on Biofilm Formation and the AtlA Autolysin of <i>Streptococcus mutans</i> . Journal of Bacteriology, 2007, 189, 6293-6302.	2.2	117
31	Trigger Factor in <i>Streptococcus mutans</i> Is Involved in Stress Tolerance, Competence Development, and Biofilm Formation. Infection and Immunity, 2005, 73, 219-225.	2.2	115
32	Transcriptional analysis of the <i>Streptococcus mutans hrcA</i> , <i>grpE</i> and <i>dnaK</i> genes and regulation of expression in response to heat shock and environmental acidification. Molecular Microbiology, 1997, 25, 329-341.	2.5	114
33	Regulation and Physiological Significance of ClpC and ClpP in <i>Streptococcus mutans</i> . Journal of Bacteriology, 2002, 184, 6357-6366.	2.2	113
34	Microfluidic study of competence regulation in <i>Streptococcus mutans</i> : environmental inputs modulate bimodal and unimodal expression of <i>comX</i> . Molecular Microbiology, 2012, 86, 258-272.	2.5	113
35	A Highly Arginolytic Streptococcus Species That Potently Antagonizes Streptococcus mutans. Applied and Environmental Microbiology, 2016, 82, 2187-2201.	3.1	109
36	Regulation of the gtfBC and ftf genes of Streptococcus mutans in biofilms in response to pH and carbohydrate. Microbiology (United Kingdom), 2001, 147, 2841-2848.	1.8	108

#	Article	IF	CITATIONS
37	Characterization of <i>Streptococcus mutans</i> Strains Deficient in EllAB ^{Man} of the Sugar Phosphotransferase System. Applied and Environmental Microbiology, 2003, 69, 4760-4769.	3.1	104
38	Streptococcus salivarius urease: genetic and biochemical characterization and expression in a dental plaque streptococcus. Infection and Immunity, 1996, 64, 585-592.	2.2	99
39	Transcriptional Regulation of the <i>Streptococcus salivarius</i> 57.1 Urease Operon. Journal of Bacteriology, 1998, 180, 5769-5775.	2.2	99
40	Role of HtrA in Growth and Competence of Streptococcus mutans UA159. Journal of Bacteriology, 2005, 187, 3028-3038.	2.2	98
41	Utilization of Lactose and Galactose by <i>Streptococcus mutans</i> : Transport, Toxicity, and Carbon Catabolite Repression. Journal of Bacteriology, 2010, 192, 2434-2444.	2.2	96
42	The effect of arginine on oral biofilm communities. Molecular Oral Microbiology, 2014, 29, 45-54.	2.7	96
43	Effects of Oxygen on Virulence Traits of Streptococcus mutans. Journal of Bacteriology, 2007, 189, 8519-8527.	2.2	93
44	Genetic and Physiologic Analysis of the <i>groE</i> Operon and Role of the HrcA Repressor in Stress Gene Regulation and Acid Tolerance in <i>Streptococcus mutans</i> . Journal of Bacteriology, 2001, 183, 6074-6084.	2.2	90
45	Physiologic Effects of Forced Down-Regulation of dnaK and groEL Expression in Streptococcus mutans. Journal of Bacteriology, 2007, 189, 1582-1588.	2.2	90
46	Global Regulation by (p)ppGpp and CodY in <i>Streptococcus mutans</i> . Journal of Bacteriology, 2008, 190, 5291-5299.	2.2	87
47	Phenotypic Heterogeneity of Genomically-Diverse Isolates of Streptococcus mutans. PLoS ONE, 2013, 8, e61358.	2.5	87
48	Progress Dissecting the Oral Microbiome in Caries and Health. Advances in Dental Research, 2012, 24, 77-80.	3.6	86
49	Analysis of an Agmatine Deiminase Gene Cluster in Streptococcus mutans UA159. Journal of Bacteriology, 2004, 186, 1902-1904.	2.2	85
50	Bacterial Biofilms May Contribute to Persistent Cochlear Implant Infection. Otology and Neurotology, 2004, 25, 953-957.	1.3	85
51	Nonfluoride caries-preventive agents. Journal of the American Dental Association, 2011, 142, 1065-1071.	1.5	83
52	Uptake and Metabolism of <i>N</i> -Acetylglucosamine and Glucosamine by Streptococcus mutans. Applied and Environmental Microbiology, 2014, 80, 5053-5067.	3.1	82
53	Diversity in Antagonistic Interactions between Commensal Oral Streptococci and Streptococcus mutans. Caries Research, 2018, 52, 88-101.	2.0	81
54	Control of Expression of the Arginine Deiminase Operon of Streptococcus gordonii by CcpA and Flp. Journal of Bacteriology, 2004, 186, 2511-2514.	2.2	80

#	Article	IF	CITATIONS
55	A novel signal transduction system and feedback loop regulate fructan hydrolase gene expression in Streptococcus mutans. Molecular Microbiology, 2006, 62, 187-200.	2.5	79
56	Cariogenicity of Streptococcus mutans Strains with Defects in Fructan Metabolism Assessed in a Program-fed Specific-pathogen-free Rat Model. Journal of Dental Research, 1996, 75, 1572-1577.	5.2	76
57	Isolation and Molecular Analysis of the Gene Cluster for the Arginine Deiminase System from <i>Streptococcus gordonii</i> DL1. Applied and Environmental Microbiology, 2002, 68, 5549-5553.	3.1	76
58	Oral Arginine Metabolism May Decrease the Risk for Dental Caries in Children. Journal of Dental Research, 2013, 92, 604-608.	5.2	76
59	Streptococcus mutans fructosyltransferase (ftf) and glucosyltransferase (gtfBC) operon fusion strains in continuous culture. Infection and Immunity, 1993, 61, 1259-1267.	2.2	76
60	The atlA Operon of Streptococcus mutans : Role in Autolysin Maturation and Cell Surface Biogenesis. Journal of Bacteriology, 2006, 188, 6877-6888.	2.2	75
61	Inactivation of VicK Affects Acid Production and Acid Survival of <i>Streptococcus mutans</i> . Journal of Bacteriology, 2009, 191, 6415-6424.	2.2	74
62	Gene Regulation by CcpA and Catabolite Repression Explored by RNA-Seq in Streptococcus mutans. PLoS ONE, 2013, 8, e60465.	2.5	74
63	Dual Functions of <i>Streptococcus salivarius</i> Urease. Journal of Bacteriology, 2000, 182, 4667-4669.	2.2	72
64	Transcriptional Regulation of the Cellobiose Operon of <i>Streptococcus mutans</i> . Journal of Bacteriology, 2009, 191, 2153-2162.	2.2	72
65	Serylâ€phosphorylated HPr regulates CcpAâ€independent carbon catabolite repression in conjunction with PTS permeases in <i>Streptococcus mutans</i> . Molecular Microbiology, 2010, 75, 1145-1158.	2.5	72
66	Characterization of the Streptococcus mutans GS-5 fruA gene encoding exo-beta-D-fructosidase. Infection and Immunity, 1992, 60, 4621-4632.	2.2	72
67	Invasion of human coronary artery endothelial cells by <i>Streptococcus mutans</i> OMZ175. Oral Microbiology and Immunology, 2009, 24, 141-145.	2.8	71
68	RNA-Seq Reveals Enhanced Sugar Metabolism in Streptococcus mutans Co-cultured with Candida albicans within Mixed-Species Biofilms. Frontiers in Microbiology, 2017, 8, 1036.	3.5	71
69	Identification and Characterization of the Nickel Uptake System for Urease Biogenesis in Streptococcus salivarius 57.I. Journal of Bacteriology, 2003, 185, 6773-6779.	2.2	70
70	Analysis of Gene Expression in Streptococcus Mutans in Biofilms in Vitro. Advances in Dental Research, 1997, 11, 100-109.	3.6	69
71	The Streptococcus mutans Cid and Lrg systems modulate virulence traits in response to multiple environmental signals. Microbiology (United Kingdom), 2010, 156, 3136-3147.	1.8	69
72	A Transcriptional Regulator and ABC Transporters Link Stress Tolerance, (p)ppGpp, and Genetic Competence in <i>Streptococcus mutans</i> . Journal of Bacteriology, 2011, 193, 862-874.	2.2	68

#	Article	IF	CITATIONS
73	Role of RelA of <i>Streptococcus mutans</i> in Global Control of Gene Expression. Journal of Bacteriology, 2008, 190, 28-36.	2.2	67
74	Effects of mutating putative two-component systems on biofilm formation by Streptococcus mutans UA159. FEMS Microbiology Letters, 2001, 205, 225-230.	1.8	66
75	Adaptive Acid Tolerance Response of Streptococcus sobrinus. Journal of Bacteriology, 2004, 186, 6383-6390.	2.2	66
76	Environmental and Growth Phase Regulation of the <i>Streptococcus gordonii</i> Arginine Deiminase Genes. Applied and Environmental Microbiology, 2008, 74, 5023-5030.	3.1	66
77	Protocols to Study the Physiology of Oral Biofilms. Methods in Molecular Biology, 2010, 666, 87-102.	0.9	65
78	Influence of Apigenin on <i>gtf</i> Gene Expression in <i>Streptococcus mutans</i> UA159. Antimicrobial Agents and Chemotherapy, 2006, 50, 542-546.	3.2	62
79	Transcriptional repressor Rex is involved in regulation of oxidative stress response and biofilm formation by Streptococcus mutans. FEMS Microbiology Letters, 2011, 320, 110-117.	1.8	62
80	Characterization of Recombinant, Ureolytic <i>Streptococcus mutans</i> Demonstrates an Inverse Relationship between Dental Plaque Ureolytic Capacity and Cariogenicity. Infection and Immunity, 2000, 68, 2621-2629.	2.2	59
81	Analysis ofStreptococcus salivariusurease expression using continuous chemostat culture. FEMS Microbiology Letters, 1996, 135, 223-229.	1.8	58
82	Transcriptome analysis of LuxSâ€deficient <i>Streptococcus mutans</i> grown in biofilms. Molecular Oral Microbiology, 2011, 26, 2-18.	2.7	58
83	Characterization of the Arginolytic Microflora Provides Insights into pH Homeostasis in Human Oral Biofilms. Caries Research, 2015, 49, 165-176.	2.0	58
84	BrpA Is Involved in Regulation of Cell Envelope Stress Responses in Streptococcus mutans. Applied and Environmental Microbiology, 2012, 78, 2914-2922.	3.1	56
85	Modification of Gene Expression and Virulence Traits in Streptococcus mutans in Response to Carbohydrate Availability. Applied and Environmental Microbiology, 2014, 80, 972-985.	3.1	54
86	Galactose Metabolism by Streptococcus mutans. Applied and Environmental Microbiology, 2004, 70, 6047-6052.	3.1	53
87	Identification of the Streptococcus mutans LytST two-component regulon reveals its contribution to oxidative stress tolerance. BMC Microbiology, 2012, 12, 187.	3.3	50
88	Comprehensive Mutational Analysis of Sucrose-Metabolizing Pathways in Streptococcus mutans Reveals Novel Roles for the Sucrose Phosphotransferase System Permease. Journal of Bacteriology, 2013, 195, 833-843.	2.2	49
89	Genetic and Physiologic Characterization of Urease of <i>Actinomyces naeslundii</i> . Infection and Immunity, 1999, 67, 504-512.	2.2	49
90	Role of Urease Enzymes in Stability of a 10-Species Oral Biofilm Consortium Cultivated in a Constant-Depth Film Fermenter. Infection and Immunity, 2003, 71, 7188-7192.	2.2	48

#	Article	IF	CITATIONS
91	Changes in Biochemical and Phenotypic Properties of Streptococcus mutans during Growth with Aeration. Applied and Environmental Microbiology, 2009, 75, 2517-2527.	3.1	48
92	Characterization of the Arginine Deiminase Operon of Streptococcus rattus FA-1. Applied and Environmental Microbiology, 2004, 70, 1321-1327.	3.1	47
93	Growth Phase and pH Influence Peptide Signaling for Competence Development in Streptococcus mutans. Journal of Bacteriology, 2014, 196, 227-236.	2.2	47
94	Effects of Arginine on Streptococcus mutans Growth, Virulence Gene Expression, and Stress Tolerance. Applied and Environmental Microbiology, 2017, 83, .	3.1	47
95	Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159. MSphere, 2018, 3, .	2.9	47
96	Sharply Tuned pH Response of Genetic Competence Regulation in Streptococcus mutans: a Microfluidic Study of the Environmental Sensitivity of <i>comX</i> . Applied and Environmental Microbiology, 2015, 81, 5622-5631.	3.1	46
97	Streptococcus mutans: Fructose Transport, Xylitol Resistance, and Virulence. Journal of Dental Research, 2006, 85, 369-373.	5.2	45
98	The Streptococcus mutans irvA Gene Encodes a trans -Acting Riboregulatory mRNA. Molecular Cell, 2015, 57, 179-190.	9.7	45
99	Species Designations Belie Phenotypic and Genotypic Heterogeneity in Oral Streptococci. MSystems, 2018, 3, .	3.8	45
100	A Hypothetical Protein of Streptococcus mutans Is Critical for Biofilm Formation. Infection and Immunity, 2005, 73, 3147-3151.	2.2	44
101	The relationship between dental caries status and dental plaque urease activity. Oral Microbiology and Immunology, 2007, 22, 61-66.	2.8	44
102	Multiple sugar: phosphotransferase system permeases participate in catabolite modification of gene expression in <i>Streptococcus mutans</i> . Molecular Microbiology, 2008, 70, 197-208.	2.5	44
103	Multiple Two-Component Systems Modulate Alkali Generation in <i>Streptococcus gordonii</i> in Response to Environmental Stresses. Journal of Bacteriology, 2009, 191, 7353-7362.	2.2	44
104	Regulation of urease gene expression by Streptococcus salivarius growing in biofilms. Environmental Microbiology, 2000, 2, 169-177.	3.8	43
105	Characteristics ofStreptococcus mutansstrains lacking the MazEF and RelBE toxin–antitoxin modules. FEMS Microbiology Letters, 2005, 253, 251-257.	1.8	43
106	AguR Is Required for Induction of the Streptococcus mutans Agmatine Deiminase System by Low pH and Agmatine. Applied and Environmental Microbiology, 2009, 75, 2629-2637.	3.1	43
107	The Major Autolysin of Streptococcus gordonii Is Subject to Complex Regulation and Modulates Stress Tolerance, Biofilm Formation, and Extracellular-DNA Release. Journal of Bacteriology, 2011, 193, 2826-2837.	2.2	42
108	Analysis of cis- and trans-Acting Factors Involved in Regulation of the Streptococcus mutans Fructanase Gene (fruA). Journal of Bacteriology, 2002, 184, 126-133.	2.2	40

#	Article	IF	CITATIONS
109	Multiple Two-Component Systems of Streptococcus mutans Regulate Agmatine Deiminase Gene Expression and Stress Tolerance. Journal of Bacteriology, 2009, 191, 7363-7366.	2.2	40
110	Characterization of cis- Acting Sites Controlling Arginine Deiminase Gene Expression in Streptococcus gordonii. Journal of Bacteriology, 2006, 188, 941-949.	2.2	39
111	Repurposing the Streptococcus mutansÂCRISPR-Cas9 System to Understand Essential Gene Function. PLoS Pathogens, 2020, 16, e1008344.	4.7	39
112	Tight Genetic Linkage of a Glucosyltransferase and Dextranase of Streptococcus mutans GS-5. Journal of Dental Research, 1986, 65, 1392-1401.	5.2	38
113	[33] Physiologic homeostasis and stress responses in oral biofilms. Methods in Enzymology, 1999, 310, 441-460.	1.0	38
114	Effects of Carbohydrate Source on Genetic Competence in Streptococcus mutans. Applied and Environmental Microbiology, 2016, 82, 4821-4834.	3.1	38
115	Construction of a New Integration Vector for Use in Streptococcus mutans. Plasmid, 2001, 45, 31-36.	1.4	37
116	Differential oxidative stress tolerance ofStreptococcus mutansisolates affects competition in an ecological mixedâ€species biofilm model. Environmental Microbiology Reports, 2018, 10, 12-22.	2.4	36
117	The EIIAB ^{Man} Phosphotransferase System Permease Regulates Carbohydrate Catabolite Repression in <i>Streptococcus gordonii</i> . Applied and Environmental Microbiology, 2011, 77, 1957-1965.	3.1	35
118	Discovery of Novel Peptides Regulating Competence Development in Streptococcus mutans. Journal of Bacteriology, 2014, 196, 3735-3745.	2.2	35
119	Bidirectional signaling in the competence regulatory pathway ofStreptococcus mutans. FEMS Microbiology Letters, 2015, 362, fnv159.	1.8	35
120	Sucrose- and Fructose-Specific Effects on the Transcriptome of Streptococcus mutans, as Determined by RNA Sequencing. Applied and Environmental Microbiology, 2016, 82, 146-156.	3.1	34
121	Site-Specific Profiling of the Dental Mycobiome Reveals Strong Taxonomic Shifts during Progression of Early-Childhood Caries. Applied and Environmental Microbiology, 2020, 86, .	3.1	34
122	Characterization of two operons that encode components of fructose-specific enzyme II of the sugar:phosphotransferase system of Streptococcus mutans. FEMS Microbiology Letters, 2001, 205, 337-342.	1.8	33
123	Two Gene Clusters Coordinate Galactose and Lactose Metabolism in Streptococcus gordonii. Applied and Environmental Microbiology, 2012, 78, 5597-5605.	3.1	33
124	A unique open reading frame within the <scp><i>comX</i></scp> gene of <scp><i>S</i></scp> <i>treptococcus mutans</i> regulates genetic competence and oxidative stress tolerance. Molecular Microbiology, 2015, 96, 463-482.	2.5	33
125	An Essential Role for (p)ppGpp in the Integration of Stress Tolerance, Peptide Signaling, and Competence Development in Streptococcus mutans. Frontiers in Microbiology, 2016, 7, 1162.	3.5	33
126	Intracellular Signaling by the <i>comRS</i> System in <i>Streptococcus mutans</i> Genetic Competence. MSphere, 2018, 3, .	2.9	32

#	Article	IF	CITATIONS
127	Cloning and expression in Escherichia coli of the genes of the arginine deiminase system of Streptococcus sanguis NCTC 10904. Infection and Immunity, 1989, 57, 3540-3548.	2.2	32
128	Urease activity in dental plaque and saliva of children during a three-year study period and its relationship with other caries risk factors. Archives of Oral Biology, 2011, 56, 1282-1289.	1.8	31
129	NagR Differentially Regulates the Expression of the <i>glmS</i> and <i>nagAB</i> Genes Required for Amino Sugar Metabolism by Streptococcus mutans. Journal of Bacteriology, 2015, 197, 3533-3544.	2.2	31
130	CcpA and CodY Coordinate Acetate Metabolism in Streptococcus mutans. Applied and Environmental Microbiology, 2017, 83, .	3.1	31
131	cis-Acting elements that regulate the low-pH-inducible urease operon of Streptococcus salivarius. Microbiology (United Kingdom), 2002, 148, 3599-3608.	1.8	31
132	Coordinated Regulation of the EII ^{Man} and <i>fruRKI</i> Operons of Streptococcus mutans by Global and Fructose-Specific Pathways. Applied and Environmental Microbiology, 2017, 83, .	3.1	30
133	RegM is required for optimal fructosyltransferase and glucosyltransferase gene expression in <i>Streptococcus mutans</i> . FEMS Microbiology Letters, 2004, 240, 75-79.	1.8	29
134	Genetics and Physiology of Acetate Metabolism by the Pta-Ack Pathway of Streptococcus mutans. Applied and Environmental Microbiology, 2015, 81, 5015-5025.	3.1	29
135	Getting to Know "The Known Unknowns― Heterogeneity in the Oral Microbiome. Advances in Dental Research, 2018, 29, 66-70.	3.6	29
136	Metabolic Profile of Supragingival Plaque Exposed to Arginine and Fluoride. Journal of Dental Research, 2019, 98, 1245-1252.	5.2	28
137	Mutanofactin promotes adhesion and biofilm formation of cariogenic Streptococcus mutans. Nature Chemical Biology, 2021, 17, 576-584.	8.0	28
138	The pH-Dependent Expression of the Urease Operon in Streptococcus salivarius Is Mediated by CodY. Applied and Environmental Microbiology, 2014, 80, 5386-5393.	3.1	27
139	Amino Sugars Enhance the Competitiveness of Beneficial Commensals with Streptococcus mutans through Multiple Mechanisms. Applied and Environmental Microbiology, 2016, 82, 3671-3682.	3.1	27
140	Transcriptional analysis of the groE and dnaK heat-shock operons of Enterococcus faecalis. Research in Microbiology, 2004, 155, 252-258.	2.1	26
141	Construction and characterization of a recombinant ureolytic Streptococcus mutans and its use to demonstrate the relationship of urease activity to pH modulating capacity. FEMS Microbiology Letters, 1997, 151, 205-211.	1.8	26
142	Caries Prevention by Arginine Metabolism in Oral Biofilms: Translating Science into Clinical Success. Current Oral Health Reports, 2014, 1, 79-85.	1.6	26
143	Differential localization of theStreptococcus mutansGS-5 fructan hydrolase enzyme, FruA. FEMS Microbiology Letters, 1994, 121, 243-249.	1.8	25
144	Amino Sugars Modify Antagonistic Interactions between Commensal Oral Streptococci and <i>Streptococcus mutans</i> . Applied and Environmental Microbiology, 2019, 85, .	3.1	25

#	Article	IF	CITATIONS
145	DnaK expression in response to heat shock ofStreptococcus mutans. FEMS Microbiology Letters, 1995, 131, 255-261.	1.8	24
146	Streptococcus salivariusurease expression: involvement of the phosphoenolpyruvate:sugar phosphotransferase system. FEMS Microbiology Letters, 1998, 165, 117-122.	1.8	24
147	Transcriptional Organization and Physiological Contributions of the relQ Operon of Streptococcus mutans. Journal of Bacteriology, 2012, 194, 1968-1978.	2.2	24
148	A galactoseâ€specific sugar:Âphosphotransferase permease is prevalent in the nonâ€core genome of <i><scp>S</scp>treptococcus mutans</i> . Molecular Oral Microbiology, 2013, 28, 292-301.	2.7	24
149	Characteristics and cariogenicity of a fructanase-defective Streptococcus mutants strain. Infection and Immunity, 1992, 60, 3673-3681.	2.2	24
150	Characterization of the Fructosyltransferase Gene of Actinomyces naeslundii WVU45. Journal of Bacteriology, 2000, 182, 3649-3654.	2.2	23
151	Biofilm formation in an in vitro model of cochlear implants with removable magnets. Otolaryngology - Head and Neck Surgery, 2007, 136, 583-588.	1.9	23
152	Oxidative Stressors Modify the Response of Streptococcus mutans to Its Competence Signal Peptides. Applied and Environmental Microbiology, 2017, 83, .	3.1	23
153	Fluorescence Tools Adapted for Real-Time Monitoring of the Behaviors of <i>Streptococcus</i> Species. Applied and Environmental Microbiology, 2019, 85, .	3.1	23
154	Analysis of Urease Expression in Actinomyces naeslundii WVU45. Infection and Immunity, 2000, 68, 6670-6676.	2.2	22
155	Osmotic stress responses ofStreptococcus mutansUA159. FEMS Microbiology Letters, 2006, 255, 240-246.	1.8	22
156	Core-Gene-Encoded Peptide Regulating Virulence-Associated Traits in Streptococcus mutans. Journal of Bacteriology, 2013, 195, 2912-2920.	2.2	22
157	Growth of Streptococcus mutans in Biofilms Alters Peptide Signaling at the Sub-population Level. Frontiers in Microbiology, 2016, 7, 1075.	3.5	22
158	Intercellular Communication via the <i>comX</i> -Inducing Peptide (XIP) of Streptococcus mutans. Journal of Bacteriology, 2017, 199, .	2.2	22
159	Molecular cloning, purification and immunological responses of recombinants GroEL and DnaK fromStreptococcus pyogenes. FEMS Immunology and Medical Microbiology, 2000, 28, 121-128.	2.7	21
160	Arginine Metabolism in Supragingival Oral Biofilms as a Potential Predictor of Caries Risk. JDR Clinical and Translational Research, 2019, 4, 262-270.	1.9	21
161	Genetic and transcriptional analysis of flgB flagellar operon constituents in the oral spirochete Treponema denticola and their heterologous expression in enteric bacteria. Infection and Immunity, 1997, 65, 2041-2051.	2.2	21
162	Novel Probiotic Mechanisms of the Oral Bacterium <i>Streptococcus</i> sp. A12 as Explored with Functional Genomics. Applied and Environmental Microbiology, 2019, 85, .	3.1	20

#	Article	IF	CITATIONS
163	The oligopeptide (opp) gene cluster of Streptococcus mutans: identification, prevalence, and characterization. Oral Microbiology and Immunology, 2007, 22, 277-284.	2.8	19
164	Distribution, regulation and role of the agmatine deiminase system in mutans streptococci. Oral Microbiology and Immunology, 2009, 24, 79-82.	2.8	19
165	Competence inhibition by the XrpA peptide encoded within the <i>comX</i> gene of <i>Streptococcus mutans</i> . Molecular Microbiology, 2018, 109, 345-364.	2.5	19
166	Spontaneously Arising Streptococcus mutans Variants with Reduced Susceptibility to Chlorhexidine Display Genetic Defects and Diminished Fitness. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	19
167	Roles of Fructosyltransferase and Levanase-Sucrase of <i>Actinomyces naeslundii</i> in Fructan and Sucrose Metabolism. Infection and Immunity, 2001, 69, 5395-5402.	2.2	18
168	Opportunities for Disrupting Cariogenic Biofilms. Advances in Dental Research, 2009, 21, 17-20.	3.6	18
169	Genome-Wide Screens Reveal New Gene Products That Influence Genetic Competence in Streptococcus mutans. Journal of Bacteriology, 2018, 200, .	2.2	18
170	Direct interactions with commensal streptococci modify intercellular communication behaviors of <i>Streptococcus mutans</i> . ISME Journal, 2021, 15, 473-488.	9.8	18
171	[28] Biofilm acid/base physiology and gene expression in oral bacteria. Methods in Enzymology, 2001, 337, 403-415.	1.0	17
172	Pathways for lactose/galactose catabolism byStreptococcus salivarius. FEMS Microbiology Letters, 2002, 209, 75-79.	1.8	17
173	Biofilm formation in cochlear implants with cochlear drug delivery channels in an in vitro model. Otolaryngology - Head and Neck Surgery, 2007, 136, 577-582.	1.9	17
174	Carbohydrate and PepO control bimodality in competence development by <i>Streptococcus mutans</i> . Molecular Microbiology, 2019, 112, 1388-1402.	2.5	17
175	The Route of Sucrose Utilization by Streptococcus mutans Affects Intracellular Polysaccharide Metabolism. Frontiers in Microbiology, 2021, 12, 636684.	3.5	17
176	Regulation of competence and gene expression in <i>Streptococcus mutans</i> by the RcrR transcriptional regulator. Molecular Oral Microbiology, 2015, 30, 147-159.	2.7	16
177	Pluronics-Formulated Farnesol Promotes Efficient Killing and Demonstrates Novel Interactions with Streptococcus mutans Biofilms. PLoS ONE, 2015, 10, e0133886.	2.5	15
178	<i>cadDX</i> Operon of <i>Streptococcus salivarius</i> 57.I. Applied and Environmental Microbiology, 2008, 74, 1642-1645.	3.1	14
179	Genetic Analysis of the Functions and Interactions of Components of the LevQRST Signal Transduction Complex of Streptococcus mutans. PLoS ONE, 2011, 6, e17335.	2.5	14

180 Title is missing!. Cytotechnology, 1998, 20, 181-190.

0.7 13

#	Article	IF	CITATIONS
181	The effect of sucrose on plaque and saliva urease levels in vivo. Archives of Oral Biology, 2010, 55, 249-254.	1.8	13
182	Preferred Hexoses Influence Long-Term Memory in and Induction of Lactose Catabolism by Streptococcus mutans. Applied and Environmental Microbiology, 2018, 84, .	3.1	13
183	Essential Roles of the <i>sppRA</i> Fructose-Phosphate Phosphohydrolase Operon in Carbohydrate Metabolism and Virulence Expression by <i>Streptococcus mutans</i> . Journal of Bacteriology, 2019, 201, .	2.2	13
184	<i>In Vivo</i> Colonization with Candidate Oral Probiotics Attenuates Streptococcus mutans Colonization and Virulence. Applied and Environmental Microbiology, 2021, 87, .	3.1	13
185	Inactivation of the ptsI gene encoding enzyme I of the sugar phosphotransferase system of Streptococcus salivarius: effects on growth and urease expression. Microbiology (United Kingdom), 2000, 146, 1179-1185.	1.8	13
186	Identification of a fliG homologue in treponema denticola. Gene, 1995, 161, 69-73.	2.2	11
187	Organization of heat shock dnaK and groE operons of the nosocomial pathogen Enterococcus faecium. Research in Microbiology, 2006, 157, 162-168.	2.1	11
188	Urease activity as a risk factor for caries development in children during a three-year study period: A survival analysis approach. Archives of Oral Biology, 2011, 56, 1560-1568.	1.8	11
189	Cloning and expression of a Streptococcus mutans glucosyltransferase gene in Bacillus subtilis. Gene, 1986, 47, 201-209.	2.2	10
190	Molecular mechanisms controlling fructoseâ€specific memory and catabolite repression in lactose metabolism by <i>Streptococcus mutans</i> . Molecular Microbiology, 2021, 115, 70-83.	2.5	10
191	Alkali production by oral bacteria and protection against dental caries. FEMS Microbiology Letters, 2000, 193, 1-6.	1.8	10
192	Threshold regulation and stochasticity from the MecA/ClpCP proteolytic system in <i>Streptococcus mutans</i> competence. Molecular Microbiology, 2018, 110, 914-930.	2.5	7
193	Manganese transport by <i>Streptococcus sanguinis</i> in acidic conditions and its impact on growth in vitro and in vivo. Molecular Microbiology, 2022, 117, 375-393.	2.5	7
194	Optimization and Evaluation of the 30S-S11 rRNA Gene for Taxonomic Profiling of Oral Streptococci. Applied and Environmental Microbiology, 2022, 88, .	3.1	7
195	[32] Use of transposons to dissect pathogenic strategies of gram-positive bacteria. Methods in Enzymology, 1994, 235, 405-426.	1.0	6
196	Conserved and divergent functions of RcrRPQ inStreptococcus gordoniiandS. mutans. FEMS Microbiology Letters, 2015, 362, fnv119.	1.8	6
197	Amino Sugars Reshape Interactions between Streptococcus mutans and Streptococcus gordonii. Applied and Environmental Microbiology, 2020, 87, .	3.1	6
198	Spontaneous Mutants of Streptococcus sanguinis with Defects in the Glucose-Phosphotransferase System Show Enhanced Post-Exponential-Phase Fitness. Journal of Bacteriology, 2021, 203, e0037521.	2.2	6

#	Article	IF	CITATIONS
199	Postâ€ŧranscriptional regulation by distal <scp>S</scp> hineâ€ <scp>D</scp> algarno sequences in the <i>grp</i> <scp><i>E</i></scp> â€ <i>dna</i> <scp><i>K</i></scp> intergenic region of <scp><i>S</i></scp> <i>treptococcus mutans</i> . Molecular Microbiology, 2015, 98, 302-317.	2.5	4
200	A single system detects and protects the beneficial oral bacterium <i>Streptococcus</i> sp. A12 from a spectrum of antimicrobial peptides. Molecular Microbiology, 2021, 116, 211-230.	2.5	4
201	Regulation of fructan degradation by Streptococcus mutans. Developments in Biological Standardization, 1995, 85, 323-31.	0.2	4
202	Testing of candidate probiotics to prevent dental caries induced by Streptococcus mutans in a mouse model. Journal of Applied Microbiology, 2022, 132, 3853-3869.	3.1	3
203	Gene Expression in Oral Biofilms. , 2003, , 212-228.		2
204	Analysis of Streptococcus salivarius urease expression using continuous chemostat culture. FEMS Microbiology Letters, 1996, 135, 223-229.	1.8	2
205	Construction and characterization of a recombinant ureolytic Streptococcus mutans and its use to demonstrate the relationship of urease activity to pH modulating capacity. FEMS Microbiology Letters, 1997, 151, 205-211.	1.8	2
206	Peptides encoded in the Streptococcus mutans RcrRPQ operon are essential for thermotolerance. Microbiology (United Kingdom), 2020, 166, 306-317.	1.8	2
207	The <i>fruB</i> Gene of Streptococcus mutans Encodes an Endo-Levanase That Enhances Growth on Levan and Influences Global Gene Expression. Microbiology Spectrum, 2022, , e0052222.	3.0	2
208	Subpopulation behaviors in lactose metabolism by <i>Streptococcus mutans</i> . Molecular Microbiology, 2021, 115, 58-69.	2.5	1
209	Differential localization of the Streptococcus mutans GS-5 fructan hydrolase enzyme, FruA. FEMS Microbiology Letters, 1994, 121, 243-249.	1.8	1
210	DnaK expression in response to heat shock of Streptococcus mutans. FEMS Microbiology Letters, 1995, 131, 255-261.	1.8	1
211	Streptococcus salivarius urease expression: involvement of the phosphoenolpyruvate:sugar phosphotransferase system. FEMS Microbiology Letters, 1998, 165, 117-122.	1.8	1
212	The effect of arginine on oral biofilm communities. Molecular Oral Microbiology, 2013, , n/a-n/a.	2.7	0