Valerio Vf Ferrario

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4422826/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of Binding Modules Fused to Cutinase on the Enzymatic Synthesis of Polyesters. Catalysts, 2022, 12, 303.	1.6	3
2	Visual Analysis of Large‣cale Protein‣igand Interaction Data. Computer Graphics Forum, 2021, 40, 394-408.	1.8	6
3	Molecular Mechanism of Methanol Inhibition in CALB-Catalyzed Alcoholysis: Analyzing Molecular Dynamics Simulations by a Markov State Model. Journal of Chemical Theory and Computation, 2021, 17, 6570-6582.	2.3	5
4	Combined Linear Interaction Energy and Alchemical Solvation Free-Energy Approach for Protein-Binding Affinity Computation. Journal of Chemical Theory and Computation, 2020, 16, 1300-1310.	2.3	12
5	Diverse effects of aqueous polar co-solvents on Candida antarctica lipase B. International Journal of Biological Macromolecules, 2020, 150, 930-940.	3.6	23
6	Bacillus subtilis Lipase A—Lipase or Esterase?. Catalysts, 2020, 10, 308.	1.6	21
7	Modelling of substrate access and substrate binding to cephalosporin acylases. Scientific Reports, 2019, 9, 12402.	1.6	6
8	Navigating within thiamine diphosphateâ€dependent decarboxylases: Sequences, structures, functional positions, and binding sites. Proteins: Structure, Function and Bioinformatics, 2019, 87, 774-785.	1.5	2
9	Molecular simulations of enzymes under non-natural conditions. European Physical Journal: Special Topics, 2019, 227, 1631-1638.	1.2	3
10	Simulation of protein diffusion: a sensitive probe of protein–solvent interactions. Journal of Biomolecular Structure and Dynamics, 2019, 37, 1534-1544.	2.0	13
11	Interpretation of cytochrome P450 monooxygenase kinetics by modeling of thermodynamic activity. Journal of Inorganic Biochemistry, 2018, 183, 172-178.	1.5	6
12	Rice Husk as an Inexpensive Renewable Immobilization Carrier for Biocatalysts Employed in the Food, Cosmetic and Polymer Sectors. Catalysts, 2018, 8, 471.	1.6	33
13	Fully renewable polyesters via polycondensation catalyzed by Thermobifida cellulosilytica cutinase 1: an integrated approach. Green Chemistry, 2017, 19, 490-502.	4.6	29
14	Nature Inspired Solutions for Polymers: Will Cutinase Enzymes Make Polyesters and Polyamides Greener?. Catalysts, 2016, 6, 205.	1.6	42
15	Renewable building blocks for sustainable polyesters: new biotechnological routes for greener plastics. Polymer International, 2016, 65, 861-871.	1.6	127
16	Large scale applications of immobilized enzymes call for sustainable and inexpensive solutions: rice husks as renewable alternatives to fossil-based organic resins. RSC Advances, 2016, 6, 63256-63270.	1.7	37
17	Role of Tunnels and Gates in Enzymatic Catalysis. , 2016, , 445-488.		0
18	The Closure of the Cycle: Enzymatic Synthesis and Functionalization of Bio-Based Polyesters. Trends in Biotechnology, 2016, 34, 316-328.	4.9	107

VALERIO VF FERRARIO

#	Article	IF	CITATIONS
19	Enlarging the tools for efficient enzymatic polycondensation: structural and catalytic features of cutinase 1 from Thermobifida cellulosilytica. Catalysis Science and Technology, 2016, 6, 3430-3442.	2.1	33
20	Investigating the Role of Conformational Effects on Laccase Stability and Hyperactivation under Stress Conditions. ChemBioChem, 2015, 16, 2365-2372.	1.3	11
21	Towards feasible and scalable solvent-free enzymatic polycondensations: integrating robust biocatalysts with thin film reactions. Green Chemistry, 2015, 17, 1756-1766.	4.6	72
22	Understanding Potentials and Restrictions of Solventâ€Free Enzymatic Polycondensation of Itaconic Acid: An Experimental and Computational Analysis. Advanced Synthesis and Catalysis, 2015, 357, 1763-1774.	2.1	67
23	Modelling and Predicting Enzyme Enantioselectivity: the Aid of Computational Methods for the Rational use of Lipase B from Candida antarctica. Current Biotechnology, 2015, 4, 87-99.	0.2	7
24	BioGPS Descriptors for Rational Engineering of Enzyme Promiscuity and Structure Based Bioinformatic Analysis. PLoS ONE, 2014, 9, e109354.	1.1	18
25	An integrated platform for automatic design and screening of virtual mutants based on 3D-QSAR analysis. Journal of Molecular Catalysis B: Enzymatic, 2014, 101, 7-15.	1.8	9
26	Thermodynamic analysis of enzyme enantioselectivity: a statistical approach by means of new differential HybridMIF descriptors. Biocatalysis and Biotransformation, 2013, 31, 272-280.	1.1	1
27	Mechanochemical activation of vincamine mediated by linear polymers: Assessment of some "critical― steps. European Journal of Pharmaceutical Sciences, 2013, 50, 56-68.	1.9	10
28	Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chemical Society Reviews, 2013, 42, 6262.	18.7	397
29	Lipases Immobilization for Effective Synthesis of Biodiesel Starting from Coffee Waste Oils. Biomolecules, 2013, 3, 514-534.	1.8	19
30	Elucidating the structural and conformational factors responsible for the activity and substrate specificity of alkanesulfonate monooxygenase. Journal of Biomolecular Structure and Dynamics, 2012, 30, 74-88.	2.0	5
31	Structural bases for understanding the stereoselectivity in ketone reductions with ADH from Thermus thermophilus: A quantitative model. Journal of Molecular Catalysis B: Enzymatic, 2011, 70, 23-31.	1.8	16
32	Conformational Changes of Lipases in Aqueous Media: A Comparative Computational Study and Experimental Implications. Advanced Synthesis and Catalysis, 2011, 353, 2466-2480.	2.1	44
33	Endo―and exoâ€inulinases: Enzymeâ€substrate interaction and rational immobilization. Biotechnology Progress, 2010, 26, 397-405.	1.3	32
34	A Threeâ€Dimensional Quanititative Structureâ€Activity Relationship (3Dâ€QSAR) Model for Predicting the Enantioselectivity of <i>Candida antarctica</i> Lipase B. Advanced Synthesis and Catalysis, 2009, 351, 1293-1302.	2.1	29
35	Enantioselective production of 3-hydroxy metabolites of tibolone by yeast reduction. Steroids, 2008, 73, 112-115.	0.8	13
36	Resolution of (R,S)-flurbiprofen catalysed by dry mycelia in organic solvent. Tetrahedron, 2007, 63, 11005-11010.	1.0	27

3

#	Article	IF	CITATIONS
37	Kinetic resolution of (R, S)-1,2-O-isopropylideneglycerol by esterification with dry mycelia of moulds. Journal of Molecular Catalysis B: Enzymatic, 2006, 41, 71-74.	1.8	14