Wolfram Spreer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/442271/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Use of thermography for high throughput phenotyping of tropical maize adaptation in water stress. Computers and Electronics in Agriculture, 2011, 79, 67-74.	7.7	94
2	Infrared Thermal Imaging as a Rapid Tool for Identifying Water‧tress Tolerant Maize Genotypes of Different Phenology. Journal of Agronomy and Crop Science, 2013, 199, 75-84.	3.5	94
3	Effect of regulated deficit irrigation and partial rootzone drying on the quality of mango fruits (Mangifera indica L., cv. â€~Chok Anan'). Agricultural Water Management, 2007, 88, 173-180.	5.6	88
4	Random Forests modelling for the estimation of mango (Mangifera indica L. cv. Chok Anan) fruit yields under different irrigation regimes. Agricultural Water Management, 2013, 116, 142-150.	5.6	76
5	Yield and fruit development in mango (Mangifera indica L. cv. Chok Anan) under different irrigation regimes. Agricultural Water Management, 2009, 96, 574-584.	5.6	67
6	Estimating the mass of mango fruit (Mangifera indica, cv. Chok Anan) from its geometric dimensions by optical measurement. Computers and Electronics in Agriculture, 2011, 75, 125-131.	7.7	52
7	Modelling the relationship between peel colour and the quality of fresh mango fruit using Random Forests. Journal of Food Engineering, 2014, 131, 7-17.	5.2	42
8	Development and assessment of different modeling approaches for size-mass estimation of mango fruits (Mangifera indica L., cv. â€~Nam Dokmai'). Computers and Electronics in Agriculture, 2015, 114, 269-276.	7.7	41
9	Harvest maturity specification for mango fruit (Mangifera indica L. â€ ⁻ Chok Anan') in regard to long supply chains. Postharvest Biology and Technology, 2011, 61, 41-55.	6.0	36
10	Harvest maturity detection for â€~Nam Dokmai #4' mango fruit (Mangifera indica L.) in consideration of long supply chains. Postharvest Biology and Technology, 2012, 72, 64-75.	6.0	31
11	Mass estimation of mango fruits (Mangifera indica L., cv. â€~Nam Dokmai') by linking image processing and artificial neural network. Engineering in Agriculture, Environment and Food, 2019, 12, 103-110.	0.5	27
12	Hydraulic Ram Pumps for Irrigation in Northern Thailand. Agriculture and Agricultural Science Procedia, 2015, 5, 107-114.	0.6	20
13	Thermal imaging for assessment of maize water stress and yield prediction under drought conditions. Journal of Agronomy and Crop Science, 2023, 209, 56-70.	3.5	19
14	Mango (Mangifera indica L. cv. Nam Dokmai) production in Northern Thailand—Costs and returns under extreme weather conditions and different irrigation treatments. Agricultural Water Management, 2013, 126, 46-55.	5.6	18
15	Quality Changes in Fresh Mango Fruits (<i>Mangifera indica</i> L. â€ ⁻ Nam Dok Mai') Under Actual Distribution Temperature Profile from Thailand to Japan. Environmental Control in Biology, 2018, 56, 45-49.	0.7	12
16	Effect of Storage Conditions on the Postharvest Quality Changes of Fresh Mango Fruits for Export during Transportation. Environmental Control in Biology, 2018, 56, 39-44.	0.7	6
17	Evaluation of Soil Water Management Difference in Mango Orchards between Thailand and Japan. American Journal of Plant Sciences, 2013, 04, 182-187.	0.8	2
18	Online Monitoring System on Controlled Irrigation Experiment for Export Quality Mango in Thailand. Lecture Notes in Computer Science, 2016, , 328-334.	1.3	2

#	Article	IF	CITATIONS
19	Mango and Longan Production in Northern Thailand: The Role of Water Saving Irrigation and Water Stress Monitoring. Springer Environmental Science and Engineering, 2013, , 215-228.	0.1	1
20	Random Forests as a Tool for Analyzing Partial Drought Stress Based on CO ₂ Concentrations in the Rootzone of Longan Trees. Environmental Control in Biology, 2018, 56, 25-31.	0.7	1
21	Sensors and Monitoring for Production and Distribution of a Tropical Fruit. Environmental Control in Biology, 2018, 56, 23-24.	0.7	0